Exploring Nexus among Big Data Analytics, Artificial Intelligence and Operational Performance

Authors

  • Fauzia Talpur Department of Computer Science, University of Sindh @Laar Campus, Sindh Pakistan
  • Kavita Tabbassum Information Technology Centre, Sindh Agriculture, University, TandoJam Sindh Pakistan
  • Muhammad Irfan Department of Computer Science, University of Sindh, Pakistan
  • Kirshan Kumar Luhana Information Technology Centre, Sindh Agriculture, University, TandoJam Sindh Pakistan
  • Muhammad Yaqoob Koondhar Information Technology Centre, Sindh Agriculture, University, TandoJam Sindh Pakistan
  • Atia Bano Memon Department of Computer Science, University of Sindh, Pakistan
  • Zulfikar Ahmed Maher Information Technology Centre, Sindh Agriculture, University, TandoJam Sindh Pakistan
  • Abida Ali Information Technology Centre, Sindh Agriculture, University, TandoJam Sindh Pakistan

Keywords:

Big Data Analytics, Artificial Intelligence Capability, Operational Performance

Abstract

This study delves into the intricate nexus between Big Data analytics, Artificial Intelligence (AI) capability, and operational performance among manufacturing Small and Medium-sized Enterprises (SMEs) in the United Arab Emirates (UAE). Employing Structural Equation Modeling-Partial Least Squares (SEM-PLS) alongside simple random sampling, the investigation draws on a substantial sample of 550 manufacturing SMEs in the UAE. The primary objective is to uncover how Big Data analytics and AI capabilities synergize to influence operational performance in this vital sector. The results have showcased that the integration of Big Data analytics with advanced AI capabilities significantly enhances operational performance among manufacturing SMEs. This study introduces novel insights by demonstrating the complementary role of Big Data analytics and AI capabilities in driving operational efficiency and effectiveness, underscoring the critical importance of technological adoption and integration in the competitive landscape of manufacturing. Furthermore, the findings highlight the strategic implications for SMEs in the manufacturing sector, suggesting that investments in Big Data and AI technologies are pivotal in achieving superior operational performance. This research not only enriches the academic discourse on the interplay between Big Data analytics, AI, and operational performance but also offers practical guidelines for SMEs aiming to harness the power of these technologies for enhanced operational outcomes. In conclusion, this investigation provides a comprehensive understanding of the dynamic relationship between technological capabilities and operational performance, offering valuable insights for policymakers, industry practitioners, and academics in the realm of manufacturing SMEs.

Downloads

Published

2024-02-01

How to Cite

Fauzia Talpur, Kavita Tabbassum, Muhammad Irfan, Kirshan Kumar Luhana, Muhammad Yaqoob Koondhar, Atia Bano Memon, … Abida Ali. (2024). Exploring Nexus among Big Data Analytics, Artificial Intelligence and Operational Performance. Kurdish Studies, 12(2), 6066–6078. Retrieved from https://kurdishstudies.net/menu-script/index.php/KS/article/view/2796

Most read articles by the same author(s)