DOI: 10.53555/ks.v11i3.4034

Impact of Emerging Technologies on Jobs and Productivity in Rural India

Dr. Usha Watane*

*Assistant Professor, Gopinathrao Munde National Institute of Rural Development and Research, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India, Email: ushawatane4@gmail.com

Abstract

Emerging technologies such as artificial intelligence (AI), automation, drones, digital platforms, and advanced farm machinery are slowly changing the nature of work and productivity in rural India. These technologies are helping farmers, small entrepreneurs, and rural workers improve their efficiency, reduce costs, and access new markets. For example, digital apps now provide real-time information on weather, crop diseases, and market prices, which helps farmers make better decisions. Machines like automated irrigation systems and sensors are increasing agricultural productivity by saving water and reducing labour efforts. Similarly, digital financial services and e-commerce platforms are creating new job opportunities in areas like mobile banking, delivery services, and online retail. However, these technologies also bring challenges. Many rural workers lack digital skills, which limits their ability to take full advantage of new opportunities. There are also concerns that automation may reduce traditional manual jobs. To ensure that technology benefits everyone, rural areas need better internet connectivity, skill-development programmes, and supportive government policies. Overall, emerging technologies have the potential to transform rural India by increasing productivity, improving income levels, and creating new kinds of employment. But this progress will be meaningful only if rural communities receive proper training, resources, and support to adapt to technological change.

Keywords: Emerging technologies, Rural India, Jobs, Productivity, Digital transformation, Skill development, Agriculture innovation.

Introduction

Emerging technologies are rapidly changing the way people work and produce goods across the world, and rural India is no exception. With the growth of digital tools, mobile internet, artificial intelligence (AI), automation, and advanced farm machinery, rural areas are beginning to experience new opportunities for development. These technologies are helping farmers improve crop production, small businesses reach wider markets, and rural youth access new forms of employment. Digital platforms are making information, financial services, and government schemes more easily available, even in remote villages.

At the same time, technology is also reshaping traditional job roles. Many manual tasks are becoming automated, and new types of jobs such as digital service providers, drone operators, and e-commerce delivery workers are emerging. This shift brings both benefits and challenges. While productivity increases and incomes can improve, many rural workers still struggle with limited digital skills, poor connectivity, and lack of awareness about new opportunities.

Understanding the impact of these emerging technologies is important for designing policies that promote inclusive and sustainable development. By studying how technology affects jobs and productivity in rural India, we can identify ways to support rural communities, bridge the digital divide, and ensure that technological growth benefits everyone.

Review of Literature

- A. Balkrishna (2023) Advances in Indian Digital Agriculture Focus: Reviews ICT, precision farming and smartfarming interventions in India. Findings: Digital tools (apps, sensors, IoT) and precision methods improve yields, reduce input use, and help decision-making but face adoption barriers (cost, skills, connectivity). Why it matters: Gives a broad, evidence-based picture of how tech raises productivity and what blocks scale-up.
- S. Mittal (2012) How Mobile Phones Help Small Farmers Focus: Impact of mobile phone services on farmer information access and market linkages. Findings: Mobile access reduces market information gaps, helps price discovery, and can raise incomes; benefits stronger where extension and markets are present. Why it matters: Classic empirical support showing simple digital tech (phones) can boost rural productivity and market participation.
- **P. Shah (Mobile Apps for Indian Agriculture)** Focus: Catalogues mobile agricultural apps and their roles in extension and farm decisions. Findings: Apps deliver weather, pest and market info; effectiveness depends on local relevance, language, and trust. Why it matters: Practical insight into what app features help rural producers adopt tech successfully.
- **P.** Rajkhowa et al. (2021) Mechanization and Farm Labour in India (Springer) Focus: Relationship between types of farm machines and labour demand. Findings: Mechanization raises productivity but changes labour needs often reducing demand for routine manual tasks while increasing demand for skilled operation and maintenance. Effects vary by crop, gender and region. Why it matters: Explains the mechanics of labor displacement vs. skill shift in rural areas.

S. Brownstone / J-PAL style analysis (2025) Labour Market Effects of Mechanization Focus: Micro-level evidence on mechanization's effects in Indian districts. Findings: Mechanization correlates with lower female labour participation in some districts and mixed effects on wages; highlights distributional and gendered impacts. Why it matters: Provides rigorous, recent evidence that mechanization can have unintended social effects.

Abishek Nippani (2020) Automation and Labour in India (policy paper) Focus: Job polarisation from automation; policy implications pre/post COVID-19. Findings: Automation risks hollowing out middle-skill jobs; India faces jobless recoveries unless skills, social protection and active labour policies adapt. Why it matters: Frames national policy responses needed to make tech benefits inclusive.

R. Singh (2025) Review of Drones in Indian Agriculture Focus: Survey of drone applications (spraying, mapping, monitoring) and adoption constraints. Findings: Drones can reduce pesticide use, improve targeting, and save labour but high costs, regulation, and fragmented landholdings limit uptake. Why it matters: Drone tech shows promise for productivity and labour savings, but scale requires business models and policy support.

Horizone Publishing / Coimbatore study (2024) — Farmer Perceptions of Drones Focus: Field study on drone use in a Tamil Nadu district. Findings: Farmers reported efficiency gains and labour savings, yet many cited cost and technical support as barriers. Why it matters: Ground-level perception evidence complements technical trials and points to adoption hurdles.

JSRR (2024) — SWOC of Drone Technology in Agriculture Focus: Strengths, weaknesses, opportunities and challenges of drones in Indian farming. Findings: Confirms yield and input-efficiency benefits, but emphasizes regulatory, training and financial barriers.

Why it matters: Useful for policy and programme design that tries to scale drone services in rural settings.

AJAEES (2023) — **Digital Technologies in Agricultural Extension** Focus: How digital tools change extension services. Findings: Digital extension widens reach and speeds up advisory services, yet effectiveness depends on interactivity, blended approaches

and

local

agent

support.

Why it matters: Shows that technology plus human facilitation works best for changing farm practices.

IBEF / industry analyses (2024–25) — E-commerce and Rural India Focus: Market analyses of e-commerce expansion into rural India. Findings: E-commerce is creating market access for rural sellers and new logistics jobs (last-mile delivery), but infrastructure and digital literacy limit uniform benefits. Why it matters: Connects tech's role in creating non-farm rural employment and new income streams.

Zenodo / Policy paper (2025) — **E-commerce & Rural Challenges** Focus: Empirical/policy review of e-commerce adoption in villages. Findings: Potential large market upside, but needs digital payment penetration, warehouses, and trust-building for sellers. Why it matters: Highlights practical steps to turn e-commerce into broad rural employment.

CDES (2025) — Technology in Rural Skill-Building Initiatives Focus: Role of digital tools in training and upskilling rural populations. Findings: Blended digital training improves reach and outcomes when linked to placement and local enterprises. Lack of connectivity and localized curricula reduce effectiveness. Why it matters: Skills are the bridge between tech availability and rural workers actually getting new jobs.

H. Kumar (SSRN, 2025) Digital Payments & Financial Inclusion Focus: How digital payment systems influence rural financial access and inclusion. Findings: Digital payments increase transaction speed, reduce costs, and expand access to formal finance enabling easier receipt of subsidies, wages and e-commerce income. But digital gaps remain. Why it matters: Financial inclusion via digital payments is critical for enabling many tech-driven rural livelihood models.

IJFANS (2023) Technological Innovation and Agricultural Productivity Focus: Multi-method study of precision agriculture, GM crops, and digital tools (2000–2020). Findings: Overall positive effect on yields and food security, especially where complementary inputs (credit, extension, markets) exist; warns against one-size-fits-all prescriptions. Why it matters: Emphasizes that technology must be combined with broader rural development support to raise productivity and create sustainable jobs.

Objectives of the Study

- 1. To examine the adoption of emerging technologies in rural India.
- 2. To analyze their impact on rural employment patterns.
- 3. To assess the effect of technology on productivity in agriculture and rural enterprises.
- 4. To identify challenges faced by rural workers in adapting to new technologies.
- 5. To recommend strategies for inclusive technological growth in rural India.

Research Methodology

Research Design

The study followed a descriptive and analytical research design, which enabled an in-depth understanding of the impact of emerging technologies on jobs and productivity in rural India. A mixed-method approach was adopted, combining both primary and secondary sources of data. The descriptive component helped explain the existing patterns of technology use in rural areas, while the analytical component examined the relationships between technological interventions, employment changes, and productivity outcomes.

Data Collection

1. Primary Data

Primary data were collected from a sample of 150 respondents, representing key rural occupational groups. The sample included:

- Farmers
- Rural artisans
- Self-Help Group (SHG) members
- Owners of Micro, Small and Medium Enterprises (MSMEs)
- Rural youths involved in technology-based activities

A structured questionnaire was administered, containing both closed-ended questions and Likert-scale items. In addition, informal interviews and group discussions were conducted to gather supplementary qualitative insights.

2. Secondary Data

Secondary data were obtained from credible national and international sources. These included reports and publications of:

- NITI Aayog, World Bank, FAO
- Ministry of Rural Development, Ministry of Agriculture, Ministry of Electronics and IT
- RBI, NABARD, and CSO
- Academic journals, books, conference proceedings, and doctoral theses related to rural development, technology adoption, labour markets, and productivity

These sources provided broader context, national-level trends, and theoretical foundations to support the empirical analysis.

Data Presentation & Analysis Technology Adoption in Rural India

1. Mobile Internet Usage

Table 1: Mobile Internet Usage Among Respondents (N = 150)

Usage Level	No. of Respondents	Percentage (%)
High usage (daily)	72	48.0
Moderate usage (3-4 times/week)	45	30.0
Low usage (rarely)	21	14.0
No usage	12	8.0
Total	150	100

Source: Primary Data

The data show that 48% of respondents used mobile internet daily, mainly for accessing weather updates, market prices, social media, and government schemes. About 30% used it moderately, often depending on network availability. Only 8% reported no usage, mostly older or less literate individuals. The results suggest that mobile internet has become a *central tool* for communication and decision-making in rural areas, though network issues and digital literacy gaps still exist.

Digital Payments

Table 2: Adoption of Digital Payment Methods (N = 150)

Tuble 2. He option of Digital Layment Methods (11 100)			
Digital Payment Adoption	Respondents	Percentage (%)	
Regular users	84	56.0	
Occasional users	39	26.0	
Rare users	18	12.0	
Never used	9	6.0	
Total	150	100	

Source: Primary Data

More than half of the respondents (56%) regularly used digital payments such as UPI, mobile banking, and wallets for transactions. SHG members and rural entrepreneurs used digital payments for buying inputs and receiving customer payments. Only 6% had never used digital payments, citing fear of fraud or difficulty using apps. Overall, digital finance is gaining strong acceptance in rural economies.

Use of Farm Machinery and Drones

Table 3: Use of Farm Machinery and Drones (N = 150)

Technology Used	Yes	No	Percentage Using (%)
Tractor/Power tiller	102	48	68.0
Drip irrigation	75	75	50.0
Harvesters	60	90	40.0
Drones (spraying/mapping)	18	132	12.0

Source: Primary Data

Machinery adoption is high: 68% used tractors or power tillers, and 50% used drip irrigation, showing progress in water-saving technologies. Drone adoption is still very low (12%), mainly due to high costs and lack of trained operators. Farmers who used drones reported benefits like reduced pesticide usage and quicker field monitoring.

E-commerce Platforms

Table 4: Use of E-commerce Platforms for Selling/Buying (N = 150)

E-commerce Usage	Respondents	Percentage (%)
Users (selling or buying)	57	38.0
Occasional users	33	22.0
Never used	60	40.0
Total	150	100

Source: Primary Data

About 38% of respondents actively used e-commerce platforms, especially rural youths, SHG women, and MSME owners. They sold products such as handicrafts, homemade items, farm produce, and also purchased farm inputs online. However, 40% had never used e-commerce, mainly due to lack of knowledge, packaging difficulties, and poor logistics. This indicates potential for expansion with proper training.

Telemedicine Services

Table 5: Telemedicine Adoption (N = 150)

(The extreme fluor from (1, 100)			
Level of Telemedicine Usage	Respondents	Percentage (%)	
Regular users	24	16.0	
Occasional users	48	32.0	
Rare users	39	26.0	
Never used	39	26.0	
Total	150	100	

Source: Primary Data

Telemedicine was used regularly by only 16% of respondents, mainly younger individuals familiar with mobile apps. About 32% used it occasionally, especially during illness or after COVID-19 when in-person visits were difficult. A significant portion (26%) had never used telemedicine, mainly due to low awareness and trust. The results suggest that telemedicine has potential but needs more promotion.

Table: Impact of Emerging Technologies on Employment in Rural Areas (N = 150)

Employment Impact Category	No. of Respondents	Percentage (%)
New job creation (digital services, data entry, drone operators, fintech agents)	48	32.0
Job losses due to mechanization (reduced manual labour)	36	24.0
Skill mismatch (lack of required digital/technical skills)	57	38.0
Case Study Exposure: E-governance jobs	21	14.0
Case Study Exposure: FPO-led digital work	27	18.0
Case Study Exposure: Digital banking roles	33	22.0

The data indicate that emerging technologies have had a mixed impact on employment in rural India. About 32% of respondents reported new job opportunities in digital services such as data entry, drone operations, CSC centres, fintech facilitation, and online sales support, showing that technology is creating modern livelihood options. At the same time, 24% experienced job losses, mainly due to mechanization replacing manual work in agriculture, construction, and small rural industries. The most significant issue was skill mismatch (38%), where many rural workers felt unprepared for technology-based roles due to low digital literacy. Case studies further show that 14% gained exposure to e-governance jobs, 18% through Farmer Producer Organizations (FPOs) adopting digital tools, and 22% through digital banking services, highlighting that structured platforms can successfully generate employment if supported with proper training and infrastructure.

Table: Impact of Emerging Technologies on Productivity in Rural India (N = 150)

Productivity Impact Area	No. of Respondents	Percentage (%)
Increased crop yield due to IoT sensors / drones	63	42.0
Reduced input cost (fertilizer, water, labour)	72	48.0
Faster access to markets through digital platforms	54	36.0
Increased efficiency in rural MSMEs (digital tools, automation)	45	30.0
Examples observed in states (Maharashtra, Karnataka, Punjab)	39	26.0

The data show that technology adoption has contributed positively to productivity in rural India. About 42% of respondents reported higher crop yields when using IoT sensors, drones for spraying, and digital crop monitoring tools. Nearly 48% experienced reduced input costs due to improved water management, optimization of fertilizers, and reduced dependence on manual labour. Faster access to markets through online platforms and mobile apps benefited 36% of respondents, helping them secure better prices and reduce middlemen. Among rural MSMEs, 30% observed increased efficiency through digital accounting, online sales, and automated production processes. Additionally, 26% of respondents cited successful examples from states like Maharashtra, Karnataka, and Punjab, where drone spraying, smart irrigation, and digital supply chains have significantly improved productivity, indicating that technology-driven practices are scalable across rural India.

Challenges in Adopting Emerging Technologies in Rural India

Despite the growing presence of digital tools, smart farming equipment, and online platforms, several challenges continue to limit the effective adoption of emerging technologies in rural India. One of the most critical issues is poor digital infrastructure. Many villages still experience low internet speed, unstable network connectivity, and limited access to smart devices, which prevents rural users from fully benefiting from digital services. This digital divide creates unequal opportunities and slows down the pace of technology-led development.

Another major challenge is low levels of digital literacy and technical skills among rural populations. A large section of farmers, agricultural labourers, artisans, and elderly individuals lack the confidence or knowledge required to use apps, digital payments, IoT devices, and e-commerce platforms. This leads to a skill mismatch, where new technology-based jobs remain vacant while traditional workers struggle to adapt. Limited availability of training centres and inadequate awareness programmes further widen this gap.

Financial constraints also play a significant role. Advanced technologies such as drones, precision farming tools, automatic irrigation systems, and modern machinery are expensive. Small and marginal farmers often cannot afford these tools without subsidy support. Even for relatively low-cost technologies like smartphones or digital payment systems, recurring expenses related to data recharge, maintenance, and device replacement act as barriers.

Additionally, rural regions face institutional and logistical challenges, including weak supply chains, limited access to repair services, and lack of trained technicians. Farmers who invest in new technologies often struggle to find local support for maintenance or troubleshooting. This discourages long-term usage and increases dependence on external agencies.

Social and behavioural resistance is another notable challenge. Many rural users mistrust online platforms, digital payments, or telemedicine services due to fear of fraud, data misuse, or unfamiliarity. Cultural norms and traditional farming practices also influence the willingness to adopt modern tools. Some farmers prefer manual labour and traditional methods, believing them to be safer or more reliable.

Further, policy and implementation gaps restrict the effective scaling of technology. Although numerous government schemes promote digital agriculture, MSME digitization, and rural entrepreneurship, many beneficiaries remain unaware of these initiatives. Delays in subsidy distribution, lack of coordination between departments, and insufficient local-level monitoring weaken the impact of such policies.

Climate-related risks and uncertain income patterns also discourage investment in new technologies. For many farmers, adopting advanced tools becomes risky when monsoon failure, market fluctuations, or crop diseases already threaten their livelihood.

In summary, while emerging technologies have tremendous potential to transform rural India, their adoption is hindered by infrastructural gaps, financial limitations, lack of skills, behavioural resistance, and weak institutional support. Addressing these challenges through targeted interventions—such as skill development, digital infrastructure strengthening, financial assistance, and awareness programmes—is essential for ensuring inclusive and sustainable rural development.

Discussion

The analysis of emerging technologies in rural India reveals a mixed but increasingly positive transformation in both employment and productivity. The data shows that digital tools such as smartphones, digital payments, IoT-based agriculture, and e-commerce have started reshaping the rural economy. A significant share of respondents reported using mobile internet and digital platforms, indicating that digital penetration has moved beyond basic connectivity to active usage for work, farming, and financial transactions. This reflects a broader national trend where rural digital adoption has accelerated after the pandemic.

In terms of employment, the study highlights both opportunities and disruptions. New jobs such as drone operators, digital banking agents, e-commerce delivery partners, and data entry workers have emerged, especially for youth. FPOs and e-governance initiatives also created employment through digital service centres and logistics support. However, mechanization and automation have reduced the demand for manual labour in agriculture, leading to job displacement for low-skilled workers. The challenge of skill mismatch persists, as many traditional workers lack digital literacy or technical expertise. This creates a dual economy—one group benefiting from technology-driven opportunities, while another struggles to adapt.

Productivity gains are significant and consistent across states. Technologies like IoT sensors, drones, and mobile-based advisory systems have helped farmers improve crop yield, reduce input costs, and access markets more efficiently. Rural MSMEs using digital tools reported faster production cycles and better supply chain coordination. These findings align with earlier research by NITI Aayog, RBI, and international agencies that emphasize digital technology as a driver of rural economic transformation.

Overall, the discussion indicates that while emerging technologies are enhancing productivity and creating new employment avenues, the benefits are not evenly distributed. Ensuring inclusive digital growth requires targeted interventions in digital literacy, training, infrastructure, and policy support to minimize the risks of exclusion and maximize rural development outcomes.

Findings

- 1. High Rate of Technology Adoption: The study found that rural households and workers are increasingly using mobile internet, digital payments, and online services. More than half of the respondents reported regular use of smartphones for agricultural information, communication, and financial transactions.
- 2. Growing Use of Digital Tools in Agriculture: Technologies such as drip irrigation, small-scale mechanization, drones, and mobile-based advisory services are being adopted by farmers. These tools have contributed to better planning, reduction in input costs, and improved crop monitoring.
- 3. Digital Payments Becoming Mainstream: A majority of respondents indicated that they use digital modes like UPI, mobile banking, and Aadhaar-enabled payment systems. This shift has reduced dependency on cash and increased financial transparency.
- **4. Emergence of New Employment Opportunities:** The study recorded new technology-driven jobs, such as agri-tech assistants, drone operators, digital banking agents, e-commerce delivery workers, and service center staff. These opportunities particularly benefit the rural youth.
- 5. Decline in Manual Labour Due to Mechanization: Increased use of agricultural machinery has reduced employment for manual workers, especially in harvesting and soil preparation. This reflects a shift from labour-intensive to technology-intensive rural work processes.
- **6. Skill Gap and Unequal Access:** A notable portion of respondents reported difficulty in understanding or using advanced digital tools. Limited digital literacy, poor connectivity in some regions, and low affordability of devices have created an uneven adoption pattern.
- 7. Positive Impact on Productivity: Farmers using IoT tools, drones, and advisory apps experienced higher crop yields and better disease/pest management. Rural MSMEs adopting digital tools reported faster production cycles and greater market access.
- **8. Strengthening of Rural Enterprises and FPOs:** Technology-enabled FPOs improved collective marketing, price negotiation, and supply chain efficiency. This resulted in higher income and reduced dependency on intermediaries.
- **9. Growth in E-Commerce Participation:** Artisans, SHG women, and small entrepreneurs increasingly sell products through digital marketplaces, leading to wider reach and better income stability.
- **10. Increased Access to Public Services:** Telemedicine, e-governance services, and online education became more accessible, reducing travel time and improving service delivery for rural populations.

Recommendations

- 1. Strengthen Digital Infrastructure in Rural Areas High-speed internet connectivity, affordable smartphones, and reliable electricity should be expanded across rural regions to ensure equitable access to emerging technologies.
- 2. Promote Digital Literacy and Skill Development Government agencies, universities, NGOs, and panchayats should conduct regular training programs on digital tools, online banking, e-commerce, and agri-tech applications to reduce the skill gap, especially among women and older workers.
- **3. Support Technology Adoption in Agriculture** Farmers should receive subsidies and incentives for adopting IoT devices, drones, soil sensors, and modern machinery. Demonstration farms, farmer field schools, and extension services must be strengthened.
- **4. Create Rural Technology and Innovation Centres**: Establishing centers at the village and block level can help provide technical assistance, training, and repair facilities for digital devices and farm machinery.

- **5. Encourage Rural MSMEs to Digitize Operations** Provide low-interest loans, tax benefits, and training to help small enterprises adopt digital tools for production, marketing, and supply chain management.
- **6. Expand Opportunities for Technology-Based Employment** The government should promote jobs like drone pilots, digital banking correspondents, agri-tech service providers, and e-commerce logistics workers through targeted skilling initiatives.
- 7. Strengthen and Digitize Farmer Producer Organizations (FPOs) FPOs should be supported with digital platforms for collective marketing, pricing data, input procurement, and direct access to buyers to maximize farmers' income.
- **8. Improve Cybersecurity and Trust in Digital Systems** Awareness programs must be conducted on online fraud prevention, safe transaction practices, and data privacy to increase confidence in digital platforms.
- 9. Enhance Telemedicine, Online Education, and E-Governance Services Increase the number of digital kiosks, village service centers, and telemedicine units to make essential services more accessible to remote populations.
- **10. Adopt Inclusive Policies for Vulnerable Groups** Special initiatives should target women, tribal communities, landless labourers, and senior citizens to ensure they are not excluded from technological transformation.
- 11. Strengthen Public-Private Partnerships (PPP) Collaboration with technology companies, agri-tech startups, banks, and telecom providers can accelerate innovation and digital solutions tailored for rural needs.
- **12. Continuous Monitoring and Evaluation** Establish mechanisms to track the impact of emerging technologies on employment, productivity, and income, and revise policies based on evidence and rural feedback.

Conclusion

The study shows that emerging technologies are playing a transformative role in shaping jobs and productivity in rural India. Digital tools—ranging from smartphones and online payments to IoT-based agriculture and e-commerce platforms—have significantly improved access to information, markets, and public services. These technologies have generated new employment opportunities in sectors such as digital banking, drone operations, agri-tech services, and e-commerce, particularly benefiting rural youth. At the same time, mechanization and automation have led to a decline in traditional manual labour, creating challenges for low-skilled workers who struggle to adapt to the rapidly changing technological environment.

Productivity gains are notable, especially among farmers and rural MSMEs. Technologies such as drones, sensors, and mobile advisory apps have resulted in higher crop yields, reduced input costs, and faster access to markets. Rural enterprises using digital platforms reported improved efficiency, better supply-chain coordination, and enhanced income stability. However, the benefits of technological advancement are not evenly distributed; issues such as digital literacy gaps, inadequate digital infrastructure, affordability constraints, and cybersecurity concerns continue to restrict inclusive growth. Overall, the findings indicate that emerging technologies hold immense potential to accelerate rural development, provided that supportive policies, skill development programs, and infrastructure investments are implemented. Ensuring digital inclusion and capacity building is crucial to maximising the positive socio-economic impact of technology and creating a more equitable and productive rural economy.

References

- 1. Agarwal, S., & Singh, R. (2021). Digital technology adoption in Indian agriculture: Opportunities and challenges. *Journal of Rural Development*, 40(3), 45–60. https://doi.org/10.1177/09730052211001234
- 2. Government of India. (2020). Digital India: Annual report 2019–20. Ministry of Electronics and Information Technology. https://www.meity.gov.in
- 3. NITI Aayog. (2021). Transforming agriculture through technology: A policy perspective. New Delhi: Government of India. https://www.niti.gov.in
- 4. World Bank. (2020). India: Leveraging technology for rural development. Washington, DC: World Bank Publications. https://www.worldbank.org
- 5. FAO. (2020). Digital innovations in agriculture and rural development. Rome: Food and Agriculture Organization. https://www.fao.org
- 6. Kumar, P., & Sharma, V. (2019). Mobile internet and its impact on rural livelihoods in India. *International Journal of Rural Studies*, 26(2), 101–115.
- 7. RBI. (2021). Report on financial inclusion and digital payments in rural India. Reserve Bank of India. https://www.rbi.org.in
- 8. NABARD. (2020). Financing technology-driven agriculture in India: Report 2019–20. Mumbai: NABARD Publications.
- 9. Choudhary, A., & Mehta, R. (2020). E-commerce adoption among rural micro-enterprises: Evidence from Maharashtra. *Asian Journal of Entrepreneurship and Innovation*, 12(1), 25–38.
- 10. Singh, T., & Joshi, R. (2021). Impact of mechanization and drones on rural employment. *Journal of Agricultural Economics*, 76(4), 512–528.
- 11. Sharma, N. (2019). Telemedicine and digital health services in rural India. Indian Journal of Public Health, 63(3), 182–188.
- 12. Ministry of Rural Development. (2020). Evaluation of digital initiatives under rural development schemes. New Delhi: Government of India.
- 13. Patil, S., & Reddy, K. (2020). Skill gaps in rural India for technology-based employment. *International Journal of Skill Development*, 8(2), 56–70.
- 14. World Economic Forum. (2021). Future of jobs in rural economies: Technology and skills. Geneva: WEF. https://www.weforum.org

15. Verma, A., & Gupta, P. (2019). ICT-enabled Farmer Producer Organizations in India: A study of Maharashtra and Karnataka. *Journal of Rural Studies, 68*, 102–115.