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Abstract 
This study conducts a rigorous comparative analysis of two prominent flow shop scheduling heuristics the Johnson’s Rule (JR) 
and the Time Deviation Rule (TDR) by validating their performance against an exact Branch and Bound (B&B) algorithm. 
The primary objective is to determine which heuristic provides solutions closest to the proven optimum for the key 
performance metrics of Total Elapsed Time (TET) and Total Idle Time (TIT). A computational experiment was designed 
using 15 benchmark problem instances of varying sizes and complexities. The exact B&B method was implemented to establish 
optimal solutions for each problem, serving as the validation benchmark. Both JR and TDR were applied to the same problem 
set. Performance was quantitatively evaluated by calculating the Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE) for each heuristic's TET and TIT results against the B&B-derived optimum. Data analysis and visualization were 
performed using MATLAB. The B&B algorithm consistently generated superior schedules, confirming its value as a 
benchmark. The error analysis revealed a nuanced performance trade-off between the heuristics. For minimizing TET, JR 
(MAE = 2.27) slightly outperformed TDR (MAE = 2.40). However, for minimizing TIT, TDR demonstrated a significant 
advantage, with both lower MAE (5.27 vs. JR's 6.53) and lower RMSE (9.49 vs. JR's 11.25). The aggregate results indicate that 
TDR provides a more robust and accurate overall approximation for sequencing problems. This research provides a critical, 
empirically-grounded validation of classical scheduling heuristics against an exact optimization method. It moves beyond 
simple TET comparison to offer a multi-metric evaluation, demonstrating that the TDR is generally a more reliable heuristic 
than JR for comprehensive schedule quality, particularly in optimizing machine utilization through idle time reduction. To 
enhance the generalizability of these findings, future work should involve larger-scale and real-world problem datasets. 
Furthermore, investigating the scalability of these methods and integrating them with metaheuristics in particular Genetic 
Algorithms and Simulated Annealing could yield even more powerful and efficient hybrid scheduling solutions. 
 
Keywords: Flow Shop Sequencing; Johnson’s Rule; Time Deviation Rule; Branch and Bound Approach; Total Elapsed Time 
minimization; Heuristic Validation. 
 
1.  Introduction  
Flow shop sequencing is a fundamental optimization problem in operational research and manufacturing logistics where a 
collection of jobs must be processed through a series of machines in a specific, fixed order (Jayasankari, 2021). This problem 
is a cornerstone for enhancing manufacturing efficiency, optimizing supply chain logistics, and improving overall resource 
allocation (Pinedo, 2016). Its practical applications are extensive, directly impacting the performance of real-world production 
systems where minimizing the total production time, or makespan, is a primary objective (Zhang et al., 2023). Key concepts 
in these sequencing problems include processing time, the time a job requires on a machine, Total Elapsed Time 
(TET) or makespan, the total time from the start of the first job to the end of the last job, and Total Idle Time (TIT), the time 
a machine remains free between jobs (Lakshmi, 2022; Watekar, 2017). 
The resolution of flow shop scheduling problems is typically approached through two distinct classes of methods, the exact 
methods and heuristic methods. Exact methods, such as the Branch and Bound (B&B) algorithm, intelligently explore the 
solution space to guarantee an optimal solution but are often computationally prohibitive for large-scale problems due to the 
NP-hard nature of sequencing (AitZai, 2012). In contrast, heuristic methods provide computationally efficient, feasible 
solutions but do not guarantee optimality. Prominent among these heuristics for flow shops are Johnson’s Rule (JR), which 
provides an optimal sequence under specific conditions (e.g., no job passing) (Garey et al., 1976), and the Time Deviation Rule 
(TDR) (Palmer, 1965). A critical research gap exists in the comprehensive validation of these heuristic rules against exact 
methodological benchmarks to rigorously quantify their performance and reliability in near-optimal sequencing. 
The methodological approaches for this study are divided into heuristics and an exact method for validation. Heuristic Methods 
offer a nearly optimal solution in a fraction of the time required by exact methods. Johnson’s Rule (JR) is a classic algorithm 
that generates an optimal sequence for two-machine flow shops where passing is not allowed (Lakshmi, 2022). Its application 
to larger machine sets or job shops requires modification to adopt the concept of fictious machines, during determination of 
the optimal sequence. The Time Deviation Rule (TDR) is another constructive heuristic that prioritizes jobs based on the 
variance of their processing times across machines, operating on the rationale that jobs with highly variable times are more 
sensitive to their position in the sequence. The exact Branch and Bound (B&B) algorithm serves as the benchmark that 
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systematically enumerates potential solutions (branching) while using calculated bounds to prune sub-optimal paths, thereby 
guaranteeing to find the optimal solution without exhaustively evaluating every possibility (AitZai, 2012). Validating the results 
of JR and TDR against the B&B-derived optimum is essential for assessing their effectiveness. 
The primary objectives of this paper are is to model a specific flow shop sequencing problem with the goal of minimizing the 
Total Elapsed Time (TET). To apply and evaluate the performance of two prominent heuristics, the Johnson’s Rule (JR) and 
the Time Deviation Rule (TDR) in solving this problem. To develop and implement an exact Branch and Bound (B&B) 
algorithm to establish the provably optimal solution for use as a validation benchmark. To conduct a rigorous comparative 
analysis of the heuristic methods against the B&B optimum using established performance metrics, namely Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE), to quantify the deviation in TET and TIT and evaluate solution quality 
(Hyndman & Koehler, 2006; Hodson, 2022). 
One of the main concerns in operations research is choosing efficient heuristics for flow shop scheduling, which is still a 
central concern. An examination of the empirical literature indicates a strong emphasis on the issues surrounding scalability, 
performance metrics, and heuristic reliability that have not yet been addressed. One of the main problems is that classical 
heuristics don't always work well in generalized "n-machine" settings. Johnson's Rule (JR) is proven to be the best option in 
the two-machine scenario, but in more complicated situations, its effectiveness decreases (Gupta and Stafford, 2006). Similar 
to this, the Time Deviation Rule (TDR) and other heuristics perform differently depending on the type of problem (Framinan 
et al., 2014). It is challenging to measure the true accuracy of heuristics because they are frequently compared against one 
another rather than a known optimum, which is a significant flaw shared by these studies. Secondly, the research shows that 
makespan minimization is the primary focus of the literature (Taillard, 1993), frequently at the expense of other important 
performance metrics. Improving machine utilization and energy efficiency requires reducing idle time just as much as makespan 
(Mouzon et al., 2007). Studies that do consider idle time, such as Teeravaraprug and Sakulpipat (2007), provide valuable insights 
into the trade-offs between methods like JR and Theory of Constraints (TOC) scheduling. However, without validation from 
an exact method like Branch and Bound (B&B), the conclusions about how close these heuristics get to the true optimal trade-
off between makespan and idle time remain speculative. There is also a sizable scalability gap in the literature. Foundational 
comparative research (e.g., Nawaz et al., 1983; Kalczynski & Kamburowski, 2007) are frequently restricted to minor problem 
cases. This neglects the performance of heuristics on the larger, more complex problems characteristic of modern industrial 
applications, leaving their practical utility for real-world scenarios in question. It is clear from works such as Modrak et al. 
(2013) that examined a number of heuristics (e.g. NEH, Palmer, and CDS) but only examined makespan and lacked cross-
validation against exact methods, providing an incomplete picture of their overall effectiveness. 
A significant methodological gap is highlighted by the reviewed literature as a whole, namely the lack of a thorough, multi-
metric validation of heuristic performance against an exact optimal solution for "n-machine" flow shops. This gap appears in 
three distinct ways, such as the validation gap, whereby prior research has not compared heuristic results (for idle time and 
makespan) to the actual optimum offered by an exact method such as Branch and Bound. Heuristic accuracy claims cannot 
be measured in the absence of this standard. Metric gap: Because idle time is a crucial metric for assessing scheduling 
effectiveness and resource usage, it has been overlooked as a result of the excessive focus on makespan minimization. The 
practical scalability of heuristics such as JR and TDR is uncertain due to the lack of research on how well they perform on 
larger, more industrially relevant problem sizes. The purpose of this study is to close this gap by performing a computational 
experiment that employs a B&B algorithm to determine the best solutions for benchmark problems. The performance of 
Johnson's Rule and the Time Deviation Rule is then thoroughly assessed and contrasted using makespan and idle time metrics. 
With this method, the most reliable technique for near-optimal flow shop scheduling will be found and a clear, quantitative 
assessment of each heuristic's dependability will follow. 
This paper proceeds as follows: Section 2 explains the mathematical building process; Section 3 detailed methodology; Sections 
4 present and discusses results and Section 5 is conclusion, recommendation and the direction of future research. 
 
2. Problem Definition and Mathematical Formulations 
This section defines a problem concept in regards to this work, develops a mathematical model with formal objective functions 
and constraints for the classic job-shop scheduling problem model and the exact Branch and Bound approach in the context 
of Job Shop Sequencing Problems and the performance measure metrics for model selection. Table 1 summarizes the 
mathematical notations and their descriptions used throughout the paper. 
 

Table 1: Mathematical notations used in model formulation 

Notation Description 

J  Set of jobs ( )1,2,3,...,J n=  assigned by j  

M  Set of machines ( )1,2,3,...,M m=  assigned by i  

n  Number of jobs to be processed 

m  Number of machines in a shop 

ijP  Processing job ( )j  on machine i  

ijC  The completion time of job 𝑗 

ijS  The starting time of job 𝑗 
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2.1 Problem Definition 

The job shop scheduling problem considered in this study involves a set of jobs ( )1,2...,J n= that must be processed on a 

set of machines ( )1,2...,M m= . Each job j consists of a sequence of operations, 1iO , 
2iO , ..., 

imO  that must be 

processed in a specified order, with each operation 
ijO requiring a specific processing time 

ijp  on machine i . The primary 

objective is to minimize the TET, defined as the maximum completion time of all jobs. The problem is subject to the following 
constraints: Machine constraint (each machine can process at most one operation at a time), operation constraint (each 
operation must be completed without interruption once started) and precedence constraint (for each job, operations must be 
processed in the specified sequence). 
 
2.2 Mathematical Formulations 
This section develops a mathematical model with formal objective function and constraints for exact Branch and Bound 
approach in the context of Job Shop Sequencing Problems (JSSP). Branch and Bound (B&B) method provides an exact 
solution approach for JSSP by systematically enumerating potential solutions while pruning branches that cannot yield better 
solutions than those already found (Brucker et al., 1997; Guzmán-Ortiz, Andres & Poler, 2022). The methodology by 
Abdolrazzagh-Nezhad & Abdullah (2017) and Pei et al (2022) was considered as a supplementary knowledge in formulating 
the model below: 
 
Decision Variables: 

• ijS : Start time of job j on machine i  

• ij ij ijC S P= + : Completion time of job j on machine i  

 
Objective function: 

• Minimize the time to process all jobs on all machines for a given sequence of jobs. 

( ) ( ) ( )Minimize Minimize max                                                               1   mj
j

TET C=  

 
Subject to 

• Precedence constraints (job operation sequence): 

( )   ( )1
+   , 1,..., 1                                                                                                                             2                 ij ij i j

S P S j i m
+

    −  

• Machine capacity constraints (no overlap on the same machine): 

( )+  or  +   ,                                                                      3          ij ij ik ik ik ijS P S S P S j k i      

• Lower bound (used to prune branches): 

( )=max max ,max                                                                          4               ji ji
i j

j i

LB P P
     
    

    
   

• Incumbent solution constraints (Branch and Bound Pruning) 

( )Current best                                                                                        5LB TET  

• Non-negativity and feasibility constraints 

( )0,  ,                                                                                                     6ijS i j   

 
2.3 Mean Absolute Error 
Mean Absolute Error (MAE) the average of the absolute differences between predicted values and actual values that measures 
the average magnitude of errors in a set of predictions, without considering their direction. In this context, it measures the 
average absolute difference between predicted heuristic and actual B&B benchmark values. The metric is easy to interpret and 
robust to outliers (Willmott & Matsuura, 2005). Consider the following mathematical formula: 
 

( )
1

1
ˆ                                                                                            7

where: : is the number of data points

            : is the actual value

ˆ            : is 

n

i i

i

i

i

MAE y y
n

n

y

y

=

= −

the predicted value
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2.4 Root Mean Squared Error  
Root Mean Squared Error (RMSE) is the square root of the Mean Squared Error (MSE). It brings the metric back to the 
original scale of the data, making it easier to interpret than MSE. The square root of MSE, providing error magnitude in the 
original units (Hodson, 2022). RMSE is more interpretable than MSE and widely used in model evaluation (Hyndman & 
Koehler, 2006). Consider its mathematical formula below: 
 

( ) ( )
2

1

1
ˆ                                                                                    8

where: : is the number of data points

            : is the actual value

ˆ            : is the pr

n

i i

i

i

i

RMSE y y
n

n

y

y

=

= −

edicted value

             

 

 
3. Methodology 
The methodology consists mainly four phases: (1) Algorithm description and adaptation, (2) Case study and data collection (3) 
Performance metric and heuristic evaluation (4) Heuristic selection and decision rule. In evaluating the performance of the JR 

and TDR, the consideration is on a sequencing problem with n-jobs  to be processed on three machines 

( )1 2 3,   and M M M  or ( )1 2m-machines , ... mM M M  with each job having a known processing time on all the 

machines.  
 
3.1 Johnson’s Rule Algorithm 

Johnson (1954) studied a two machine jobn−  flow shop problem and gave an optimal algorithm for a sequence giving 

minimum completion time for all jobs. He subsequently extended the optimal algorithm for a special type of three machine 

and the general jobn−  to machinem −  flow shop problem. The algorithm under Johnson’s rule was adopted from 

Okwu and Emoyon (2020), Rahmana et al. (2023) and Babatunde & Onikoyi (2016). Processing jobn−  on 3 machine−

and jobn− on machinem −  algorithms are almost similar because both involves optimality testing and the generation 

of fictions machines during optimal job sequence determination (Gupta et al., 2011; Asif et al., 2022).  Here we present the 

algorithm involving processing jobn−  through machinem − . The following are the relevant steps: 

 
Step 1: Testing for optimality. The optimal solution can be obtained if either or both of the following conditions hold good. 

That is, the minimum processing time on machines 1M  and machine mM  is as greater as the maximum processing time on 

any of the remaining ( )1m− machines. Find; 

• ( ) ( ) ( )1Min ,Min  and Maxj mj ijt t t  to verify the below conditions such that; 

• ( ) ( ) ( )Min Max ; 2,3,..., 1ij ijt t j m = − and/or 

• ( ) ( ) ( )Min Max ; 2,3,..., 1mj ijt t j m = − . 

 
Step 2:   If either or both the conditions mentioned above hold, then go to step 3. Otherwise, the algorithm fails. 
 

Step 3: Convert machinem −  problem into 2 machine−  problem by introducing two fictitious machines 

( ) and G H with corresponding processing times given by: 

• 2 1... ; 1,2,...j ij j m jtG t t t j n−= + + + = , i.e. processing time of n-jobs on machine G  is the sum of the processing 

times on machines 1 2 1, ,..., m jM M M −  

• 2 3 ... ; 1,2,...j j j mjtH t t t j n= + + + = , i.e. processing time of n-jobs on machine H  is the sum of the processing 

times on machines 1 2 1, ,..., m jM M M −  

Step 4: The same procedure for solving 2 machine−  problem can be used to find the optimal sequence for the fictions 

machines G and H. 
Step 5:   Select the job having the shortest activity time. If the activity selected lies under first 
work center, schedule the job first and if the activity selected lies under the second work center, schedule the job last. 
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Step 6:    The selected job must be eliminated from the list as per step 5. Repeat step 5, till all 
selected jobs are scheduled. 
 
3.2 Time Deviation Rule Algorithm 
Time deviation method is used to obtain the optimal sequence of the jobs. In this method time duration table is calculated for 
each job in the row wise and the column wise (Rao, Raju & Babu (2013). Karthikeyan (2010), Watekar (2017) and Mosheiov 

(2004) in their respective papers discussed the Time Deviation Rule (TDR) for processing jobn− through 2 machine− , 

jobn− through 3 machine−  and jobn−  through machinem − in determining the optimal sequence of jobs in job 

sequencing problems. The following are the steps in implementing the TDR method:   
 

Step 1: Determine row and column maximum times for each cell ( ),i j  of the problem matrix. 

( )
1 1

max , max                                                                                           9
m n

i ij j ij
j i

p t c t
= =

= =  

Step 2: Determine row and column deviation for each cell ( ),i j of the problem matrix. 

( )                                                                                                              10

                                                                    

ij i ij

ij j ij

r p t

s c t

= −

= − ( )

( )

( )

                                          11

Where;

           is the row time deviation of ,  cell

            is the maximum time of  row

            is the column time deviation of ,  

th

ij

th

i

th

ij

r i j

p i

s i j cell

            is the maximum time of  column

            is the time required to process  job on  machine

th

j

th th

ij

c i

t i j

 

 

Step 2: Find the cell with both time deviation vectors are zero for machine 1M  and perform the corresponding job firstly. 

Step 3: Suppose more than one cell has both deviation vectors are zero then obtain sum deviations of the corresponding 
columns. Perform the job first which cell have the largest sum deviation and perform next job which have next largest sum 
deviation and so on. 

Step 4: Similarly look the cell which has time deviation vectors both are zero for machine 2M and perform the corresponding 

job lastly. 
Step 5: If more than one cell has both zero deviations, then obtain sum deviations of the corresponding columns. Perform 
the job last with cell that have the largest sum deviation and perform next job which have next largest sum deviation prior to 
last and so on. 
Step 6: If we get the sequence involving, all jobs for the job sequencing problem, then stop the process. Otherwise, go to 
next step. 
Step 7: Form the reduced time duration table which contains only non-assigned jobs. 
Step 8: Continue with the above steps from (1) to (6) for the reduced time duration table. But perform the jobs next to the 

previously assigned jobs for the cells which have both time deviation vectors are zero for 1M  machine and perform jobs 

previous to the last assigned jobs for cells which have both time deviation vectors are zero for 2M  machine. 

Step 9: This will be continued until we get the required order of sequence of jobs for job sequencing problems, which will 
give minimum total elapsed time. 
 
3.3 Exact Branch and Bound Algorithm 
This algorithm is a well-known exact algorithm for solving an optimization problem, especially combinational optimization 
that obtains the optimal solution by dividing the original problem into a series of sub problems using certain criteria (Takano 
& Nagano, 2017; Daneshamooz et al., 2021; Shackelton, 1971). Shackelton (1971), Gupta and Goel (2022) and Kouider & 
Haddadène (2021) outlined the series of steps to find the optimal solution of the problem. 
 
Step 1: Initialization: Determine the initial Upper Bound (UB), create root node with all jobs unscheduled and initialize active 
nodes list with root node. 
Step 2: Node Selection: Select node with smallest UB (best-first search) 
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Step 3: Branching: For selected node, create child nodes by fixing one more job in sequence for level k , create n k−  child 

nodes for remaining unscheduled jobs. 

Step 4: Bounding: For each child node: Calculate LB, If LB UB , prune this Branch. If complete sequence and 

TET UB , update upper bound. 

Step 5: Termination: When no active nodes remain, the current UB value is the optimal solution.  
 
3.4 Case study Description and Data collection 
Fifteen (15) benchmark problem instances were selected from the literature on flow shop scheduling that was available. These 
instances were chosen to represent a diverse set of conditions, including varying complexity levels, balanced and unbalanced 
processing time matrices, and varying job counts (n), in order to ensure a robust evaluation of the algorithms. 
 
3.5 Performance Metrics and Heuristic Evaluation 
Following the application of Johnson's Rule (JR) and the Time Deviation Rule (TDR) algorithms, each heuristic yields an 
optimal job sequence. This sequence serves as the input for calculating the key performance metrics: Total Elapsed Time 
(TET) and Total Idle Time (TIT). The calculation of TET and TIT for a given sequence was performed using a computational 
matrix algorithm. This method provides a systematic, tabular approach for determining the start and finish times of all 
operations on all machines, from which TET and TIT are directly derived. For this study, the algorithms were coded in 
MATLAB to compute the TET and TIT for JR, TDR, and the exact Branch and Bound (B&B) method and the results for all 
problem instances are presented in Table 2. To quantify the performance of the heuristics, the B&B results were established 
as the optimal benchmark. The absolute deviations in TET and TIT for the JR and TDR solutions were calculated against this 
benchmark for each problem instance, as detailed in Table 3. These deviation values were subsequently used to compute the 
aggregate error metrics Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) providing a robust measure of 
each heuristic's average performance and error magnitude, respectively (see Table 4). 
 
3.6 Heuristic Selection and Decision Rule 
The selection between Johnson's Rule (JR) and the Time Deviation Rule (TDR) was based on a quantitative analysis of their 
performance deviations from the proven optimal solutions generated by the Branch and Bound (B&B) algorithm. The Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE) for both Total Elapsed Time (TET) and Total Idle Time (TIT) 
served as the key comparative metrics. The formal decision rule for method selection is as follows: 

• Primary Criterion: The heuristic with the lowest MAE and RMSE values is preferred, as this indicates the smallest average 
deviation from the optimal benchmark across all problem instances (Hodson, 2022; Chai & Draxler, 2014). 

• Unambiguous Case: If one heuristic demonstrates superior performance (lower errors) for both TET and TIT, it is 
conclusively selected as the preferred method (Greco, Matarazzo & Slowinski, 2000). 

• Conflicting Case: If the results are conflicting (e.g., one heuristic is better for TET while the other is better for TIT), 
priority is given to the heuristic that minimizes TET. This prioritization is justified because minimizing (TET) is typically 
the primary objective in flow shop scheduling, as it directly correlates with throughput and delivery times (Lee, 1997; 
Kubiak et al., 2002). 

 
4. Results and Discussion 
Table 2 provides TET and TIT solutions for three methods Johnson's Rule (JR), Time Deviation Rule (TDR) and the Exact 
Branch and Bound (B&B) approach in fifteen (15) conveniently selected sequencing problems.  
 

Table 2: Metric solution for JR, TDR and B&B methods 

Example  Method/Heuristic TET TIT 

1. Johnson’s rule  57 53 

Time deviation rule 51 44 

Exact Branch and Bound 51 46 

2. Johnson’s rule  121 281 

Time deviation rule 116 280 

Exact Branch and Bound 112 246 

3. Johnson’s rule  55 83 

Time deviation rule 55 75 

Exact Branch and Bound 51 79 

4. Johnson’s rule  87 87 

Time deviation rule 85 81 

Exact Branch and Bound 84 81 

5. Johnson’s rule  45 19 

Time deviation rule 45 19 

Exact Branch and Bound 43 16 

6. Johnson’s rule  145 28 

Time deviation rule 144 31 
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Exact Branch and Bound 142 29 

7. Johnson’s rule  45 12 

Time deviation rule 48 9 

Exact Branch and Bound 44 9 

8. Johnson’s rule  66 37 

Time deviation rule 65 23 

Exact Branch and Bound 62 14 

9. Johnson’s rule  44 10 

Time deviation rule 50 5 

Exact Branch and Bound 44 10 

10. Johnson’s rule  72 42 

Time deviation rule 74 35 

Exact Branch and Bound 72 39 

11. Johnson’s rule  59 22 

Time deviation rule 64 17 

Exact Branch and Bound 59 22 

12. Johnson’s rule  50 41 

Time deviation rule 50 41 

Exact Branch and Bound 50 39 

13. Johnson’s rule  84 81 

Time deviation rule 85 81 

Exact Branch and Bound 84 81 

14. Johnson’s rule  96 46 

Time deviation rule 96 54 

Exact Branch and Bound 96 54 

15. Johnson’s rule  53 19 

Time deviation rule 53 19 

Exact Branch and Bound 51 16 

 
Figure 1 and Figure 2, compares the performances of TET and TIT for the three methods B&B, JR and TDR to identify or 
verify the benchmark method.  
 

 
Figure 1: Comparison on TET for JR, TDR and B&B methods 

Figure 1 provides the bar chart comparing the Total Elapsed Time (TET) of three scheduling methods; JR, TDR), and B&B. 
The results shows that, B&B consistently achieves the lowest TET in most examples such as 2, 3, 5, 7, 8, 9, 11 and 15, indicating 
it is the most superior to others. 
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Figure 2: Comparison on TIT for JR, TDR and B&B methods 

 
Figure 2 provides a bar chart comparing Total Idle Time (TIT) for the three scheduling methods JR, TDR and B&B. According 
to examples 2, 5, 8, 12 and 15 B&B is expected to outperform other heuristics JR and TDR as it has the lowest values of TIT, 
which is a criterion for best performance.  
 

Table 3: Percentage Score on wins and ties of TET and TIT for JR, TDR and B&B 

Method 
(Heuristic) 

TET TIT Overall, 
Score (%) Wins (out of 15) Score (%) Wins (out of 15) Score (%) 

B&B 10 66.7 11 73.3 70 

TDR 4 26.7 1 6.7 16.7 

JR 1 6.6 3 20 13.3 

 
Table 3 displays a combined summary for percentage comparison scores of JR, TDR, and B&B methods based on TET and 
TIT. The overall percentage scores shows that, B&B is the most effective method against JR and TDR, dominating both TET 
and TIT performances. Therefore, B&B is superior aligning with its exact optimization nature. 
 

 
Figure 3: Comparison of Scheduling Methods: TIT, TET, and Overall Scores 

Figure 3 compares performances in percentage score for B&B, TDR, and JR methods across three different score types, TIT 
score (in blue), TET score (in orange) and Overall score (in yellow). The comparison is based on wins (number of minimum 
TET and TIT values, plus number of ties on TET and TIT values on both categories). B&B performs better in TIT (73.3%) 
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but slightly better, in TET (66.6%), TDR performs better in TET (26.7%) but poorly in TIT (6.7%).  JR has better performance 
in TIT (20%) than in TET (6.7%). The overall performance indicate that B&B scores (70%), TDR scores (16.7%) and JR 
scores (13.3%), which signifies that B&B is the top performer in all metrics (TET and TIT), qualifying to be superior aligning 
with its exact optimization nature. Therefore, we reserve the B&B (TET and TIT) solution for validation purpose in order to 
make JR and TDR methods to compete on their performances.  

 
Figure 4: Comparison on TET solution for Johnson's Rule and Time Deviation Rule 

 
The bar graph in Figure 4 compares the TET performance of two scheduling heuristics the JR and TDR. The preliminary 
investigation shows that, TDR outperforms JR, by achieving a lower TET in 7 scores out of 15 as reflected in examples 1, 2, 
4, 6, 8, 12 and 13. JR ties TDR in examples 3, 5, 14 and 15, signifying no heuristic benefit in these cases. TDR underperforms 
JR in examples 7, 9, 10 and 11, indicating situational limitations. TDR is generally superior to JR for minimizing TET, 
particularly in problems like 1, 2 and 8. JR remains competitive in cases like in 5 and 15.  

 

 
Figure 5: Comparison on TIT solution for Johnson's Rule and Time Deviation Rule 

 
The bar graph in Figure 5 compares the performance of two scheduling methods JR and TDR using TIT solution. TDR 
reduces TIT more efficiently than JR in most cases, outperforming JR in 9 out of 15 cases as shown in examples 1, 3, 4, 7, 8, 
9, 10, 11 and 12. JR matches TDR in examples 2, 5, 13 and 15, showing no heuristic benefit. JR is more stable than TDR in 
cases 6 and 14.  

Table 4: Deviations for TET (JR & TDR) and TIT (JR & TDR) 
Example Optimal TET 

(B&B) 
JR Error TDR Error Optimal TIT 

(B&B) 
JR Error TDR Error 

1 51 6 0 46 7 -2 
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2 112 9 4 246 35 34 

3 51 4 4 79 4 -4 

4 84 3 1 81 6 0 

5 43 2 2 16 3 3 

6 142 3 2 29 -1 2 

7 44 1 4 9 3 0 

8 62 4 3 14 23 9 

9 44 0 6 10 0 -5 

10 72 0 2 39 3 -4 

11 59 0 5 22 0 -5 

12 50 0 0 39 2 2 

13 84 0 1 81 0 0 

14 96 0 0 54 -8 0 

15 51 2 2 16 3 3 

 
Table 4 systematically show the calculations of TET and TIT deviations from B&B optimized schedules as a point of reference. 
Optimal TET (B&B) is referred from the exact B&B (TET) column. JR Error (TET) is obtained by, JR (TET) minus Optimal 
(TET). TDR Error (TET) is obtained by, TDR (TET) minus Optimal (TET). Optimal TIT (B&B) is referred from the exact 
B&B (TIT) column. JR Error (TIT) is obtained by taking JR (TIT) minus Optimal (TIT) and TDR Error (TIT) is obtained by 
taking TDR (TIT) minus Optimal (TIT). The negative error values at some point show that, some heuristic methods yielded 
a better value than the optimal B&B value.  
 

Table 5: MAE and RMSE values on TET and TIT 
Metric JR TDR 

MAE (TET) 2.27 2.40 

RMSE (TET) 3.43 3.01 

MAE (TIT) 6.53 5.27 

RMSE (TIT) 11.25 9.49 

 
Table 5 shows the metrics MAE and RMSE for JR and TDR validated by the exact B&B) optimal solution for both TET and 
TIT whereby, the MAE and RMSE with lower values indicates the better performance. For TET dataset, JR has MAE (2.27) 
and TDR MAE (2.40), implying that, JR has better performance. JR has RMSE (3.43) and TDR has RMSE (3.01) implying 
that, TDR has better performance. For the TIT dataset, JR ha MAE (6.53) and TDR has MAE (5.27) showing that, TDR is 
significantly better. JR has RMSE (11.25) and TDR has RMSE (9.49), TDR is better. Generally, using MAE on TET, the 
performance is conflicting in the sense that, JR slightly outperforms TDR, but using RMSE, TDR performs better. On TIT, 
TDR constantly outperforms JR by a clear margin. In this case, Time Deviation Rule (TDR) appears to be inconclusively 
better heuristic than its counterpart Johnson’s Rule (JR). 

 

 
Figure 6: Performance comparison on JR and TDR using MAE and RMSE 
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Figure 6 shows the conflicting results on TET that might affect decision-making process in arriving to a good conclusion 
“using MAE, JR slightly outperforms TDR, but using RMSE, TDR outperforms JR”. To address this for clarity, we create 
three bar charts that average error values and provide a clearer comparison between JR and TDR by calculating average TET 
error, TIT error and overall error for each method and display three bar charts, one for TET errors, second for TIT errors 
and the third chart for overall average error. Figure 7 shows a clear visualization for JR and TDR on TET, TIT and overall 
errors. 
 

 
Figure 7: Average error comparison between JR and TDR heuristics 

 
Figure 7 is a bar chart that presents a comparison of average error values between Johnson’s Rule (JR) and the Time Deviation 
Rule (TDR) across three metrics, average error (TET), average error (TIT) and average error combined (overall error). For all 
the three metrics, average TET error (JR) is higher than average TET Error (TDR). TDR performs slightly better in average 
TET error and clearly better in average TIT error and has the lowest overall average error, indicating better general 
performance. In this case, clearly TDR is superior to JR across all averaged error metrics, principally in reducing TIT and the 
overall average error. 

 
5. Conclusion and Recommendation 
This study conducted a rigorous, multi-metric validation of two classical scheduling heuristics Johnson’s Rule (JR) and the 
Time Deviation Rule (TDR) against the exact benchmark provided by a Branch and Bound (B&B) algorithm. The objective 
was to determine which heuristic provides solutions closest to the proven optimum for both Total Elapsed Time (TET) and 
Total Idle Time (TIT) across a diverse set of 15 flow shop problems. The B&B algorithm consistently generated superior 
schedules, confirming its effectiveness as a validation benchmark against the inherent sub-optimality of heuristic approaches. 
For the primary objective of minimizing TET, Johnson’s Rule demonstrated a marginal advantage, as indicated by its slightly 
lower Mean Absolute Error (MAE = 2.27 vs. TDR's 2.40). However, for the critical secondary objective of minimizing TIT a 
key indicator of machine utilization and operational efficiency the TDR proved significantly more robust, outperforming JR 
on both MAE (5.27 vs. 6.53) and RMSE (9.49 vs. 11.25). When performance is aggregated across both metrics, TDR emerges 
as the more reliable and comprehensive heuristic. TDR is recommended for general application in flow shop environments, 
its strength in minimizing idle time directly translates to improved machine utilization and reduced operational costs, making 
it a more versatile tool than JR for holistic schedule optimization. Moreover, for any scenario requiring a balance between 
throughput (TET) and efficiency (TIT), TDR should be the heuristic of choice. For this paper, future studies should consider 
expanding the scale of analysis by employing larger and more complex benchmark problem sets (e.g., with 20+ jobs and more 
machines) to thoroughly test the scalability and robustness of both heuristics under more industrially relevant conditions. 
Incorporate real-world industrial data set to validate these findings that include stochastic elements such as machine 
breakdowns, dynamic job arrivals, and sequence-dependent setup times. Develop hybrid metaheuristic models to investigate 
the integration of these heuristics as initial seeds (e.g., Genetic Algorithms, Simulated Annealing). Formalize the trade-off 
between TET and TIT into a multi-objective optimization framework, using techniques like Pareto front analysis to provide 
schedulers with a set of optimal solutions representing different balances between the two competing objectives. 
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