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Abstract

This study conducts a rigorous comparative analysis of two prominent flow shop scheduling heuristics the Johnson’s Rule (JR)
and the Time Deviation Rule (TDR) by validating their performance against an exact Branch and Bound (B&B) algorithm.
The primary objective is to determine which heuristic provides solutions closest to the proven optimum for the key
performance metrics of Total FElapsed Time (TET) and Total Idle Time (TTT). A computational experiment was designed
using 15 benchmark problem instances of varying sizes and complexities. The exact B&B method was implemented to establish
optimal solutions for each problem, serving as the validation benchmark. Both JR and TDR were applied to the same problem
set. Performance was quantitatively evaluated by calculating the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) for each heuristic's TET and TIT results against the B&B-derived optimum. Data analysis and visualization were
performed using MATLAB. The B&B algorithm consistently generated superior schedules, confirming its value as a
benchmark. The error analysis revealed a nuanced performance trade-off between the heuristics. For minimizing TET, JR
(MAE = 2.27) slightly outperformed TDR (MAE = 2.40). However, for minimizing TTT, TDR demonstrated a significant
advantage, with both lower MAE (5.27 vs. JR's 6.53) and lower RMSE (9.49 vs. JR's 11.25). The aggtregate results indicate that
TDR provides a more robust and accurate overall approximation for sequencing problems. This research provides a critical,
empirically-grounded validation of classical scheduling heuristics against an exact optimization method. It moves beyond
simple TET comparison to offer a multi-metric evaluation, demonstrating that the TDR is generally a more reliable heuristic
than JR for comprehensive schedule quality, particulatly in optimizing machine utilization through idle time reduction. To
enhance the generalizability of these findings, future work should involve larger-scale and real-world problem datasets.
Furthermore, investigating the scalability of these methods and integrating them with metaheuristics in particular Genetic
Algorithms and Simulated Annealing could yield even more powerful and efficient hybrid scheduling solutions.

Keywords: Flow Shop Sequencing; Johnson’s Rule; Time Deviation Rule; Branch and Bound Approach; Total Elapsed Time
minimization; Heuristic Validation.

1. Introduction

Flow shop sequencing is a fundamental optimization problem in operational research and manufacturing logistics where a
collection of jobs must be processed through a series of machines in a specific, fixed order (Jayasankari, 2021). This problem
is a cornerstone for enhancing manufacturing efficiency, optimizing supply chain logistics, and improving overall resource
allocation (Pinedo, 2016). Its practical applications atre extensive, directly impacting the performance of real-world production
systems where minimizing the total production time, or makespan, is a primary objective (Zhang et al., 2023). Key concepts
in these sequencing problems include processing time, the time a job requires on a machine, Total Elapsed Time
(TET) or makespan, the total time from the start of the first job to the end of the last job, and Total Idle Time (TTT), the time
a machine remains free between jobs (Lakshmi, 2022; Watekar, 2017).

The resolution of flow shop scheduling problems is typically approached through two distinct classes of methods, the exact
methods and heuristic methods. Exact methods, such as the Branch and Bound (B&B) algorithm, intelligently explore the
solution space to guarantee an optimal solution but are often computationally prohibitive for large-scale problems due to the
NP-hard nature of sequencing (AitZai, 2012). In contrast, heuristic methods provide computationally efficient, feasible
solutions but do not guarantee optimality. Prominent among these heuristics for flow shops are Johnson’s Rule (JR), which
provides an optimal sequence under specific conditions (e.g., no job passing) (Garey et al., 19706), and the Time Deviation Rule
(TDR) (Palmer, 1965). A critical research gap exists in the comprehensive validation of these heuristic rules against exact
methodological benchmarks to rigorously quantify their performance and reliability in near-optimal sequencing.

The methodological approaches for this study are divided into heuristics and an exact method for validation. Heuristic Methods
offer a nearly optimal solution in a fraction of the time required by exact methods. Johnson’s Rule (JR) is a classic algorithm
that generates an optimal sequence for two-machine flow shops where passing is not allowed (Lakshmi, 2022). Its application
to larger machine sets or job shops requires modification to adopt the concept of fictious machines, during determination of
the optimal sequence. The Time Deviation Rule (TDR) is another constructive heuristic that prioritizes jobs based on the
variance of their processing times across machines, operating on the rationale that jobs with highly variable times are more
sensitive to their position in the sequence. The exact Branch and Bound (B&B) algorithm serves as the benchmark that
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systematically enumerates potential solutions (branching) while using calculated bounds to prune sub-optimal paths, thereby
guaranteeing to find the optimal solution without exhaustively evaluating every possibility (AitZai, 2012). Validating the results
of JR and TDR against the B&B-derived optimum is essential for assessing their effectiveness.

The primary objectives of this paper are is to model a specific flow shop sequencing problem with the goal of minimizing the
Total Elapsed Time (TET). To apply and evaluate the performance of two prominent heuristics, the Johnson’s Rule (JR) and
the Time Deviation Rule (TDR) in solving this problem. To develop and implement an exact Branch and Bound (B&B)
algorithm to establish the provably optimal solution for use as a validation benchmark. To conduct a rigorous comparative
analysis of the heuristic methods against the B&B optimum using established performance metrics, namely Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), to quantify the deviation in TET and TIT and evaluate solution quality
(Hyndman & Koehler, 2006; Hodson, 2022).

One of the main concerns in operations research is choosing efficient heuristics for flow shop scheduling, which is still a
central concern. An examination of the empirical literature indicates a strong emphasis on the issues surrounding scalability,
performance metrics, and heuristic reliability that have not yet been addressed. One of the main problems is that classical
heuristics don't always work well in generalized "n-machine" settings. Johnson's Rule (JR) is proven to be the best option in
the two-machine scenario, but in more complicated situations, its effectiveness decreases (Gupta and Stafford, 20006). Similar
to this, the Time Deviation Rule (TDR) and other heuristics perform differently depending on the type of problem (Framinan
et al., 2014). It is challenging to measure the true accuracy of heuristics because they are frequently compared against one
another rather than a known optimum, which is a significant flaw shared by these studies. Secondly, the research shows that
makespan minimization is the primary focus of the literature (Taillard, 1993), frequently at the expense of other important
performance metrics. Improving machine utilization and energy efficiency requires reducing idle time just as much as makespan
(Mouzon et al., 2007). Studies that do consider idle time, such as Teeravaraprug and Sakulpipat (2007), provide valuable insights
into the trade-offs between methods like JR and Theory of Constraints (TOC) scheduling. However, without validation from
an exact method like Branch and Bound (B&B), the conclusions about how close these heuristics get to the true optimal trade-
off between makespan and idle time remain speculative. There is also a sizable scalability gap in the literature. Foundational
comparative research (e.g., Nawaz et al., 1983; Kalczynski & Kamburowski, 2007) are frequently restricted to minor problem
cases. This neglects the performance of heuristics on the larger, more complex problems characteristic of modern industrial
applications, leaving their practical utility for real-world scenarios in question. It is clear from works such as Modrak et al.
(2013) that examined a number of heuristics (e.g. NEH, Palmer, and CDS) but only examined makespan and lacked cross-
validation against exact methods, providing an incomplete picture of their overall effectiveness.

A significant methodological gap is highlighted by the reviewed literature as a whole, namely the lack of a thorough, multi-
metric validation of heuristic performance against an exact optimal solution for "n-machine" flow shops. This gap appears in
three distinct ways, such as the validation gap, whereby prior research has not compared heuristic results (for idle time and
makespan) to the actual optimum offered by an exact method such as Branch and Bound. Heuristic accuracy claims cannot
be measured in the absence of this standard. Metric gap: Because idle time is a crucial metric for assessing scheduling
effectiveness and resource usage, it has been overlooked as a result of the excessive focus on makespan minimization. The
practical scalability of heuristics such as JR and TDR is uncertain due to the lack of research on how well they perform on
larger, more industrially relevant problem sizes. The purpose of this study is to close this gap by performing a computational
experiment that employs a B&B algorithm to determine the best solutions for benchmark problems. The performance of
Johnson's Rule and the Time Deviation Rule is then thoroughly assessed and contrasted using makespan and idle time metrics.
With this method, the most reliable technique for near-optimal flow shop scheduling will be found and a clear, quantitative
assessment of each heuristic's dependability will follow.

This paper proceeds as follows: Section 2 explains the mathematical building process; Section 3 detailed methodology; Sections
4 present and discusses results and Section 5 is conclusion, recommendation and the direction of future research.

2. Problem Definition and Mathematical Formulations

This section defines a problem concept in regards to this work, develops a mathematical model with formal objective functions
and constraints for the classic job-shop scheduling problem model and the exact Branch and Bound approach in the context
of Job Shop Sequencing Problems and the performance measure metrics for model selection. Table 1 summarizes the
mathematical notations and their descriptions used throughout the paper.

Table 1: Mathematical notations used in model formulation

Notation Description
J Set of jobs J:(1,2,3,...,n) assigned by ]
M Set of machines M = (1, 2,3,..., m) assigned by 1
n Number of jobs to be processed
m Number of machines in a shop
Rj Processing job ( J ) on machine I
C. The completion time of job j
U
S The starting time of job j
ij
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2.1 Problem Definition

The job shop scheduling problem considered in this study involves a set of jobs J = (1, 2., n) that must be processed on a

o

set of machines M = (1,2...,7’)’1). Each job J consists of a sequence of operations, O, , O, ., that must be

il> i2> o
processed in a specified order, with each operation 01/ requiring a specific processing time p,; on machine 7. The primary

objective is to minimize the TET, defined as the maximum completion time of all jobs. The problem is subject to the following
constraints: Machine constraint (each machine can process at most one operation at a time), operation constraint (each
operation must be completed without interruption once started) and precedence constraint (for each job, operations must be
processed in the specified sequence).

2.2 Mathematical Formulations

This section develops a mathematical model with formal objective function and constraints for exact Branch and Bound
approach in the context of Job Shop Sequencing Problems (JSSP). Branch and Bound (B&B) method provides an exact
solution approach for ]SSP by systematically enumerating potential solutions while pruning branches that cannot yield better
solutions than those already found (Brucker et al., 1997; Guzman-Ortiz, Andres & Poler, 2022). The methodology by
Abdolrazzagh-Nezhad & Abdullah (2017) and Pei et al (2022) was considered as a supplementary knowledge in formulating
the model below:

Decision Variables:
. Sl.]. : Start time of job J on machine I
° Cy = Sij + Rj : Completion time of job ] on machine I

Objective function:

e Minimize the time to process all jobs on all machines for a given sequence of jobs.

Minimize (T ET ) = Minimize (max C,, ) (l)
J !
Subject to
e Precedence constraints (job operation sequence):
§;th, < S(M)j Vj,Vie {1,...,m —1} (2)
e Machine capacity constraints (no overlap on the same machine):
S,*h, <S8, or S,+P, <8, Vj#k,Vi (3)

e Lower bound (used to prune branches):

LB=max max ;Pﬂ ,m;c_lx(IZPﬁj (4)

e Incumbent solution constraints (Branch and Bound Pruning)

LB > Current best TET (5)
e Non-negativity and feasibility constraints
S, >0, Vi, j (6)

2.3 Mean Absolute Error

Mean Absolute Error (MAE) the average of the absolute differences between predicted values and actual values that measures
the average magnitude of errors in a set of predictions, without considering their direction. In this context, it measures the
average absolute difference between predicted heuristic and actual B&B benchmark values. The metric is easy to interpret and
robust to outliers (Willmott & Matsuura, 2005). Consider the following mathematical formula:

(7)

1 A
MAE=;Z|y1. -7,
i=1

where: 7 :is the number of data points
»,: 1s the actual value

v, :1s the predicted value
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2.4 Root Mean Squared Error

Root Mean Squared Error (RMSE) is the square root of the Mean Squared Error (MSE). It brings the metric back to the
original scale of the data, making it easier to interpret than MSE. The square root of MSE, providing error magnitude in the
original units (Hodson, 2022). RMSE is more interpretable than MSE and widely used in model evaluation (Hyndman &
Koehler, 20006). Consider its mathematical formula below:

RMSE = /%Z(y,.—y[)z (8)

where: n :1s the number of data points
v, is the actual value

v, :1s the predicted value

3. Methodology
The methodology consists mainly four phases: (1) Algorithm description and adaptation, (2) Case study and data collection (3)
Performance metric and heuristic evaluation (4) Heuristic selection and decision rule. In evaluating the performance of the JR

and TDR, the consideration is on a sequencing problem with N-jobs to be processed on three machines

(M], M, and M3) or m-machines (MI’MZ"'Mm) with each job having a known processing time on all the

machines.

3.1 Johnson’s Rule Algorithm
Johnson (1954) studied a two machine 72— jOb flow shop problem and gave an optimal algorithm for a sequence giving
minimum completion time for all jobs. He subsequently extended the optimal algorithm for a special type of three machine

and the general 1 —jOb to m —machine flow shop problem. The algorithm under Johnson’s rule was adopted from
Okwu and Emoyon (2020), Rahmana et al. (2023) and Babatunde & Onikoyi (2016). Processing 7 — _]Ob on 3—machine

and n— job on m —machine algorithms are almost similar because both involves optimality testing and the generation
of fictions machines during optimal job sequence determination (Gupta et al., 2011; Asif et al., 2022). Here we present the
algorithm involving processing #— JOb through m —machine . The following are the relevant steps:

Step 1: Testing for optimality. The optimal solution can be obtained if either or both of the following conditions hold good.

That is, the minimum processing time on machines M 1 and machine M . 1s as greater as the maximum processing time on

any of the remaining (172 —1) machines. Find;

« Min(t,),Min(t,,) and Max £, ) to verify the below conditions such that;
. Min(tl.j)ZMax(tij);j:2,3,...,(m—1) and/or

. Min(tmj)ZMax(ti/.);j:2,3,...,(m—1).

Step 2: If cither or both the conditions mentioned above hold, then go to step 3. Otherwise, the algorithm fails.

Step 3: Convert m—machine problem into 2—machine problem by introducing two fictitious machines
(G and H ) with corresponding processing times given by:

. th = tl.j +t2j +...+tm_1j;j =1,2,...n, i.e. processing time of n-jobs on machine G is the sum of the processing

times on machines ]W1 ,Mz,...,M

m—1j
. tHj =t2j +l‘3j +...+tmj;j =1,2,..1n, ie. processing time of n-jobs on machine H is the sum of the processing
times on machines ]\41 ’MZ""’Mm—lj

Step 4: The same procedure for solving 2 —machine problem can be used to find the optimal sequence for the fictions
machines G and H.

Step 5: Select the job having the shortest activity time. If the activity selected lies under first

work center, schedule the job first and if the activity selected lies under the second work center, schedule the job last.
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Step 6: The selected job must be eliminated from the list as per step 5. Repeat step 5, till all
selected jobs are scheduled.

3.2 Time Deviation Rule Algorithm
Time deviation method is used to obtain the optimal sequence of the jobs. In this method time duration table is calculated for
each job in the row wise and the column wise (Rao, Raju & Babu (2013). Karthikeyan (2010), Watekar (2017) and Mosheiov

(2004) in their respective papers discussed the Time Deviation Rule (IDR) for processing 72 — job through 2 —machine,

n — job through 3 —machine and 7 — job through m —machine in determining the optimal sequence of jobs in job
sequencing problems. The following are the steps in implementing the TDR method:

Step 1: Determine row and column maximum times for each cell (i i ) of the problem matrix.

m n
P R, =T (©)

Step 2: Determine row and column deviation for each cell (i ] ) of the problem matrix.

=0T (10)
S; =€~ (11)
Where;

r, is the row time deviation of (i, )th cell

p, is the maximum time of i row

s; is the column time deviation of (i, )th cell
c; is the maximum time of i" column

t, is the time required to process i job on ;" machine

Step 2: Find the cell with both time deviation vectors are zero for machine M 1 and perform the corresponding job firstly.

Step 3: Suppose more than one cell has both deviation vectors are zero then obtain sum deviations of the corresponding
columns. Perform the job first which cell have the largest sum deviation and perform next job which have next largest sum
deviation and so on.

Step 4: Similarly look the cell which has time deviation vectors both are zero for machine M , and perform the corresponding

job lastly.

Step 5: If more than one cell has both zero deviations, then obtain sum deviations of the corresponding columns. Perform
the job last with cell that have the largest sum deviation and perform next job which have next largest sum deviation prior to
last and so on.

Step 6: If we get the sequence involving, all jobs for the job sequencing problem, then stop the process. Otherwise, go to
next step.

Step 7: Form the reduced time duration table which contains only non-assigned jobs.

Step 8: Continue with the above steps from (1) to (6) for the reduced time duration table. But perform the jobs next to the

previously assigned jobs for the cells which have both time deviation vectors are zero for M | machine and perform jobs

previous to the last assigned jobs for cells which have both time deviation vectors are zero for M , machine.

Step 9: This will be continued until we get the required order of sequence of jobs for job sequencing problems, which will
give minimum total elapsed time.

3.3 Exact Branch and Bound Algorithm

This algorithm is a well-known exact algorithm for solving an optimization problem, especially combinational optimization
that obtains the optimal solution by dividing the original problem into a series of sub problems using certain criteria (Takano
& Nagano, 2017; Daneshamooz et al., 2021; Shackelton, 1971). Shackelton (1971), Gupta and Goel (2022) and Kouider &
Haddadene (2021) outlined the series of steps to find the optimal solution of the problem.

Step 1: Initialization: Determine the initial Upper Bound (UB), create root node with all jobs unscheduled and initialize active

nodes list with root node.
Step 2: Node Selection: Select node with smallest UB (best-first search)
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Step 3: Branching: For selected node, create child nodes by fixing one more job in sequence for level k | create 1 —k child
nodes for remaining unscheduled jobs.

Step 4: Bounding: For each child node: Calculate LB, If LB > UB, prune this Branch. If complete sequence and
TET = UB, update upper bound.

Step 5: Termination: When no active nodes remain, the current UB value is the optimal solution.

3.4 Case study Description and Data collection

Fifteen (15) benchmark problem instances were selected from the literature on flow shop scheduling that was available. These
instances were chosen to represent a diverse set of conditions, including varying complexity levels, balanced and unbalanced
processing time matrices, and varying job counts (n), in order to ensure a robust evaluation of the algorithms.

3.5 Performance Metrics and Heuristic Evaluation

Following the application of Johnson's Rule (JR) and the Time Deviation Rule (TDR) algorithms, each heuristic yields an
optimal job sequence. This sequence serves as the input for calculating the key performance metrics: Total Elapsed Time
(TET) and Total Idle Time (TIT). The calculation of TET and TIT for a given sequence was performed using a computational
matrix algorithm. This method provides a systematic, tabular approach for determining the start and finish times of all
operations on all machines, from which TET and TIT are directly derived. For this study, the algorithms were coded in
MATLAB to compute the TET and TIT for JR, TDR, and the exact Branch and Bound (B&B) method and the results for all
problem instances are presented in Table 2. To quantify the performance of the heuristics, the B&B results were established
as the optimal benchmark. The absolute deviations in TET and TIT for the JR and TDR solutions were calculated against this
benchmark for each problem instance, as detailed in Table 3. These deviation values were subsequently used to compute the
aggregate error metrics Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) providing a robust measure of
each heuristic's average performance and error magnitude, respectively (see Table 4).

3.6 Heuristic Selection and Decision Rule

The selection between Johnson's Rule (JR) and the Time Deviation Rule (TDR) was based on a quantitative analysis of their

performance deviations from the proven optimal solutions generated by the Branch and Bound (B&B) algorithm. The Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE) for both Total Elapsed Time (TET) and Total Idle Time (TTT)

served as the key comparative metrics. The formal decision rule for method selection is as follows:

e  Primary Criterion: The heuristic with the lowest MAE and RMSE values is preferred, as this indicates the smallest average
deviation from the optimal benchmark across all problem instances (Hodson, 2022; Chai & Draxler, 2014).

e  Unambiguous Case: If one heuristic demonstrates superior performance (lower errors) for both TET and TIT, it is
conclusively selected as the preferred method (Greco, Matarazzo & Slowinski, 2000).

e  Conlflicting Case: If the results are conflicting (e.g., one heuristic is better for TET while the other is better for TIT),
priority is given to the heuristic that minimizes TET. This prioritization is justified because minimizing (TET) is typically
the primary objective in flow shop scheduling, as it directly correlates with throughput and delivery times (Lee, 1997,
Kubiak et al., 2002).

4. Results and Discussion
Table 2 provides TET and TIT solutions for three methods Johnson's Rule (JR), Time Deviation Rule (TDR) and the Exact
Branch and Bound (B&B) approach in fifteen (15) conveniently selected sequencing problems.

Table 2: Metric solution for JR, TDR and B&B methods

Example Method/Heuristic TET TIT
1. Johnson’s rule 57 53
Time deviation rule 51 44
Exact Branch and Bound 51 46
2. Johnson’s rule 121 281
Time deviation rule 116 280
Exact Branch and Bound 112 246
3. Johnson’s rule 55 83
Time deviation rule 55 75
Exact Branch and Bound 51 79
4. Johnson’s rule 87 87
Time deviation rule 85 81
Exact Branch and Bound 84 81
5. Johnson’s rule 45 19
Time deviation rule 45 19
Exact Branch and Bound 43 16
6. Johnson’s rule 145 28
Time deviation rule 144 31
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Exact Branch and Bound 142 29
7. Johnson’s rule 45 12
Time deviation rule 48 9
Exact Branch and Bound 44 9
8. Johnson’s rule 66 37
Time deviation rule 65 23
Exact Branch and Bound 62 14
9. Johnson’s rule 44 10
Time deviation rule 50 5
Exact Branch and Bound 44 10
10. Johnson’s rule 72 42
Time deviation rule 74 35
Exact Branch and Bound 72 39
11. Johnson’s rule 59 22
Time deviation rule 64 17
Exact Branch and Bound 59 22
12. Johnson’s rule 50 41
Time deviation rule 50 41
Exact Branch and Bound 50 39
13. Johnson’s rule 84 81
Time deviation rule 85 81
Exact Branch and Bound 84 81
14. Johnson’s rule 96 46
Time deviation rule 96 54
Exact Branch and Bound 96 54
15. Johnson’s rule 53 19
Time deviation rule 53 19
Exact Branch and Bound 51 16

Figure 1 and Figure 2, compares the performances of TET and TIT for the three methods B&B, JR and TDR to identify or
verify the benchmark method.
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Figure 1: Comparison on TET for JR, TDR and B&B methods
Figure 1 provides the bar chart comparing the Total Elapsed Time (TET) of three scheduling methods; JR, TDR), and B&B.

The results shows that, B&B consistently achieves the lowest TET in most examples such as 2, 3,5,7,8,9, 11 and 15, indicating
it is the most superior to others.
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Figure 2: Comparison on TIT for JR, TDR and B&B methods

12 13 14 15

Figure 2 provides a bar chart comparing Total Idle Time (TIT) for the three scheduling methods JR, TDR and B&B. According
to examples 2, 5, 8, 12 and 15 B&B is expected to outperform other heuristics JR and TDR as it has the lowest values of TIT,
which is a criterion for best performance.

Table 3: Percentage Score on wins and ties of TET and TIT for JR, TDR and B&B

Method TET TIT Overall,
(Heuristic) Wins (out of 15) Score (%) Wins (out of 15) Score (%) Score (%)
B&B 10 66.7 11 73.3 70

TDR 4 26.7 1 6.7 16.7

JR 1 6.6 3 20 13.3

Table 3 displays a combined summary for percentage comparison scores of JR, TDR, and B&B methods based on TET and
TIT. The overall percentage scores shows that, B&B is the most effective method against JR and TDR, dominating both TET
and TIT performances. Therefore, B&B is superior aligning with its exact optimization nature.

80 : ; , ; v
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{ I TET Score {%)

70 - |:l0-erau Score (%] |

16.7%

13.3%

6.7%

Performance Score (%)
& 3 g & 3 3
T 1 1 T T Y
e
— =
#

6.7%
B&B JR
Figure 3: Comparison of Scheduling Methods: TIT, TET, and Overall Scores
Figure 3 compares performances in percentage score for B&B, TDR, and JR methods across three different score types, TIT

score (in blue), TET score (in orange) and Overall score (in yellow). The comparison is based on wins (number of minimum
TET and TIT values, plus number of ties on TET and TIT values on both categories). B&B performs better in TTT (73.3%)
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but slightly better, in TET (66.6%), TDR performs better in TET (26.7%) but pootly in TTT (6.7%). JR has better performance
in TIT (20%) than in TET (6.7%). The overall performance indicate that B&B scores (70%), TDR scores (16.7%) and JR
scores (13.3%), which signifies that B&B is the top performer in all metrics (TET and TIT), qualifying to be superior aligning
with its exact optimization nature. Therefore, we reserve the B&B (TET and TIT) solution for validation purpose in order to
make JR and TDR methods to compete on their performances.

150 T T T T T T T T T
I Johnson's Rule
[ Time Deviation Rule
100 7
2
c
=}
)
E
=
50 - 7]

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Example Number

Figure 4: Comparison on TET solution for Johnson's Rule and Time Deviation Rule

The bar graph in Figure 4 compares the TET performance of two scheduling heuristics the JR and TDR. The preliminary
investigation shows that, TDR outperforms JR, by achieving a lower TET in 7 scores out of 15 as reflected in examples 1, 2,
4,6, 8,12 and 13. JR ties TDR in examples 3, 5, 14 and 15, signifying no heuristic benefit in these cases. TDR underperforms
JR in examples 7, 9, 10 and 11, indicating situational limitations. TDR is generally superior to JR for minimizing TET,
particularly in problems like 1, 2 and 8. JR remains competitive in cases like in 5 and 15.
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Figure 5: Comparison on TIT solution for Johnson's Rule and Time Deviation Rule

The bar graph in Figure 5 compares the performance of two scheduling methods JR and TDR using TIT solution. TDR
reduces TIT more efficiently than JR in most cases, outperforming JR in 9 out of 15 cases as shown in examples 1, 3, 4, 7, §,
9,10, 11 and 12. JR matches TDR in examples 2, 5, 13 and 15, showing no heuristic benefit. JR is more stable than TDR in
cases 6 and 14.

Table 4: Deviations for TET (JR & TDR) and TIT (JR & TDR)

Example Optimal TET | JR Error TDR Error | Optimal TIT | JR Error TDR Error
(B&B) (B&B)
1 51 6 0 46 7 -2
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2 112 9 4 246 35 34
3 51 4 4 79 4 -4
4 84 3 1 81 6 0
5 43 2 2 16 3 3
6 142 3 2 29 -1 2
7 44 1 4 9 3 0
8 62 4 3 14 23 9
9 44 0 6 10 0 -5
10 72 0 2 39 3 -4
11 59 0 5 22 0 -5
12 50 0 0 39 2 2
13 84 0 1 81 0 0
14 96 0 0 54 -8 0
15 51 2 2 16 3 3

Table 4 systematically show the calculations of TET and TTT deviations from B&B optimized schedules as a point of reference.
Optimal TET (B&B) is referred from the exact B&B (TET) column. JR Error (TET) is obtained by, JR (TET) minus Optimal
(TET). TDR Error (TET) is obtained by, TDR (TET) minus Optimal (TET). Optimal TIT (B&B) is referred from the exact
B&B (TIT) column. JR Error (TIT) is obtained by taking JR (TTT) minus Optimal (TTT) and TDR Error (TIT) is obtained by
taking TDR (TIT) minus Optimal (TIT). The negative error values at some point show that, some heuristic methods yielded
a better value than the optimal B&B value.

Table 5: MAE and RMSE values on TET and TIT

Metric JR TDR
MAE (TET) 2.27 2.40
RMSE (TET) 343 3.01
MAE (TTT) 6.53 5.27
RMSE (TIT) 11.25 9.49

Table 5 shows the metrics MAE and RMSE for JR and TDR validated by the exact B&B) optimal solution for both TET and
TIT whereby, the MAE and RMSE with lower values indicates the better performance. For TET dataset, JR has MAE (2.27)
and TDR MAE (2.40), implying that, JR has better performance. JR has RMSE (3.43) and TDR has RMSE (3.01) implying
that, TDR has better performance. For the TIT dataset, JR ha MAE (6.53) and TDR has MAE (5.27) showing that, TDR is
significantly better. JR has RMSE (11.25) and TDR has RMSE (9.49), TDR is better. Generally, using MAE on TET, the
performance is conflicting in the sense that, JR slightly outperforms TDR, but using RMSE, TDR performs better. On TIT,
TDR constantly outperforms JR by a clear margin. In this case, Time Deviation Rule (TDR) appears to be inconclusively
better heuristic than its counterpart Johnson’s Rule (JR).

12 [ Johneon's e (JA)
I-Tmc Deveation Rule (TDR)

10

6.
4_
| Il
0

MAE (TET) AMSE (TET) MAE (TT) AMSE (TIT)
Figure 6: Performance comparison on JR and TDR using MAE and RMSE
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Figure 6 shows the conflicting results on TET that might affect decision-making process in arriving to a good conclusion
“using MAE, JR slightly outperforms TDR, but using RMSE, TDR outperforms JR”. To address this for clarity, we create
three bar charts that average error values and provide a clearer comparison between JR and TDR by calculating average TET
error, TIT error and overall error for each method and display three bar charts, one for TET errors, second for TIT errors
and the third chart for overall average error. Figure 7 shows a clear visualization for JR and TDR on TET, TIT and overall

errors.
T T \
B Johnson's Rule (JA)
I Time Deviation Rule (TDR) |
2+
1 -
0 . i A i

Avg TET Error Avg TIT Error Overall Avg Error
Figure 7: Average error comparison between JR and TDR heuristics
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Figure 7 is a bar chart that presents a comparison of average error values between Johnson’s Rule (JR) and the Time Deviation
Rule (TDR) across three metrics, average error (TET), average error (TIT) and average error combined (overall error). For all
the three metrics, average TET error (JR) is higher than average TET Error (TDR). TDR performs slightly better in average
TET error and clearly better in average TIT error and has the lowest overall average error, indicating better general
performance. In this case, clearly TDR is superior to JR across all averaged error metrics, principally in reducing TIT and the
overall average error.

5. Conclusion and Recommendation

This study conducted a rigorous, multi-metric validation of two classical scheduling heuristics Johnson’s Rule (JR) and the
Time Deviation Rule (TDR) against the exact benchmark provided by a Branch and Bound (B&B) algorithm. The objective
was to determine which heuristic provides solutions closest to the proven optimum for both Total Elapsed Time (TET) and
Total Idle Time (TTT) across a diverse set of 15 flow shop problems. The B&B algorithm consistently generated superior
schedules, confirming its effectiveness as a validation benchmark against the inherent sub-optimality of heuristic approaches.
For the primary objective of minimizing TET, Johnson’s Rule demonstrated a marginal advantage, as indicated by its slightly
lower Mean Absolute Error (MAE = 2.27 vs. TDR's 2.40). However, for the critical secondary objective of minimizing TIT a
key indicator of machine utilization and operational efficiency the TDR proved significantly more robust, outperforming JR
on both MAE (5.27 vs. 6.53) and RMSE (9.49 vs. 11.25). When performance is aggregated across both metrics, TDR emerges
as the more reliable and comprehensive heuristic. TDR is recommended for general application in flow shop environments,
its strength in minimizing idle time directly translates to improved machine utilization and reduced operational costs, making
it a more versatile tool than JR for holistic schedule optimization. Moreover, for any scenario requiring a balance between
throughput (TET) and efficiency (TTT), TDR should be the heuristic of choice. For this paper, future studies should consider
expanding the scale of analysis by employing larger and more complex benchmark problem sets (e.g., with 20+ jobs and more
machines) to thoroughly test the scalability and robustness of both heuristics under more industrially relevant conditions.
Incorporate real-world industrial data set to validate these findings that include stochastic elements such as machine
breakdowns, dynamic job arrivals, and sequence-dependent setup times. Develop hybrid metaheuristic models to investigate
the integration of these heuristics as initial seeds (e.g., Genetic Algorithms, Simulated Annealing). Formalize the trade-off
between TET and TIT into a multi-objective optimization framework, using techniques like Pareto front analysis to provide
schedulers with a set of optimal solutions representing different balances between the two competing objectives.
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