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Abstract 

This study focuses on nonlinear equations, particularly the (1 + 3) dimensional generalized modified Schrödinger equation 
(GMSE) as a key example. Given the extensive use of classical Lie symmetry methods, the research applies Lie symmetry 
analysis to explore the (GMSE) in detail. Lie symmetries of the equation are derived to identify rare classes of exact solutions, 
with the arbitrary functions in each solution offering a wide range of possible solution profiles. The Lie symmetry method 
holds considerable future potential for generating more diverse solutions, as it allows solutions to incorporate functions and 
arbitrary constants. This work also effectively highlights the uniqueness of the solutions when compared to previously 
published results. 
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1 Introduction 
A broad range of physical phenomena and behaviors can be modeled by nonlinear dispersive partial differential equations 
(PDEs). Differentiating the dispersive effects of these equations is essential. Equations can display linear or non-linear 
dispersive effects, or their dispersive effects may completely vanish. The investigation into symmetries of PDEs is advancing, 
as they are essential for expanding known solutions, realizing linearization, and finding new integrable PDEs. Physical existence 
or models are often described using nonlinear equations. Analytical solutions of nonlinear PDEs are crucial in areas like 
mathematical physics, fluid dynamics, nonlinear optics, plasma physics, modeling and engineering. In recent decades, 
considerable attention has been given to extracting solutions of nonlinear systems, such as traveling wave solutions, solitary 
waves, periodic waves, kink and anti-kink solutions, solitons, and studying the integrability of certain fascinating nonlinear 
partial differential equations (PDEs) [1–5]. This includes equations like the Burgers equation [6], modified equal width-Burgers 

equation [7], combined KdV-mKdV equation [8], nonlinear Schrödinger equation [9], the KdV model [10], and the modified 
equal width equation [11]. Some results were derived using the rational sinhcosh methods and polynomial function. Hence, 
determining exact solutions has gained essential importance in the field of nonlinear science. In recent years, physicists and 
mathematicians have extensively worked on this subject, introducing numerous useful techniques, including the mapping 
method [12], the reciprocal Backlund transformation method [13], Hirota’s bilinear method [14], the Painleve expansion [15], 
the homogeneous balance approach [16], the Expfunction technique [17], the rational expansion method [18], the Jacobi 
elliptic function expansion method [19,20], and many other approaches [21,22]. The application of the Lie symmetry method 
to PDEs provides a robust approach for deriving reductions and invariant solutions [23]. To describe symmetries, Lie 
symmetry groups serve as a major family of mathematical tools [24]. 
 
Sophus Lie is widely recognized by mathematicians as the founder of the theory of transformation groups, which led to the 
development of the modern theory of Lie groups [25]. Recently, Tian et al. [26] successfully developed a direct and effective 
approach for the symmetry-preserving discretization of generalized higher-order equations and proposed an open problem 
regarding the symmetries and multipliers of conservation laws. We analyze (3.1) in this paper from the viewpoint of symmetry 
reductions in PDEs, obtaining the Lie point symmetries admitted by (3.1) for arbitrary functions to derive exact solutions. The 
mathematical technique of symmetry analysis [27,28] is used to examine and understand the symmetries that exist within 
equations or physical systems. Symmetries describe the invariance of systems under specific transformations. In symmetry 
analysis of differential equations, the goal is to identify transformations, typically generated by Lie groups, that maintain the 
equation’s form or transform it into an equivalent one. The symmetries can expose important details about the equations, 
potentially leading to more efficient solutions. Lie theory is of great significance in nonlinear and engineering fields, with 
countless practical uses. In contemporary research, a significant volume of literature on Lie theory can be found [29–31]. 
Kumar and Kumar [32] employ the Lie symmetry method to find the analytical solutions of the (2 + 1)-dimensional modified 
CBS equation. The solutions to many well-known nonlinear PDEs are achievable solely through symmetry methods. Lie point 
symmetries are instrumental in identifying similarity transformations, a method that researchers use to introduce new 
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dependent and independent variables. By introducing similarity variables into PDEs, the number of independent variables is 
reduced, although the order of the PDEs remains constant. A sequence of reductions applied to the simplified PDEs ultimately 
leads to ODEs. By repeatedly applying the Lie symmetry technique on the reduced ODEs, lower-order ODEs are derived, 
from which particular solutions to the given system can be computed. Currently, researchers rely on powerful Computer 
Algebra Systems (CAS), like Maple and Mathematica (commercial), to efficiently carry out symmetry calculations. To calculate 
the symmetries in this work, we make use of the Mathematica and Maple [33,34]. We employ symmetry approaches to achieve 
our goals, as we are focused on obtaining exact solutions to the nonlinear GMSE (3.1). 
 
2 Fundamental Operators 
To utilize the Lie method for GMSE (3.1) we examine a one-parameter Lie group of point transformations acting on the 
dependent and independent variable spaces. 

u´ = u + ϵλ(u,t,x,y,z) + O(ϵ2),  

t´= t + ϵψ(u,t,x,y,z) + O(ϵ2),  

x´ = 
y´ = 
z´ = 

x + ϵξ(u,t,x,y,z) + O(ϵ2), y + 

ϵϕ(u,t,x,y,z) + O(ϵ2), z + ϵη(u,t,x,y,z) 

+ O(ϵ2), 

                                           (2.1) 

related to the infinitesimal generators 
W = λ(u,t,x,y,z)∂u + ψ(u,t,x,y,z)∂t + ξ(u,t,x,y,z)∂x+                                                                                                              (2.2) 

ϕ(u,t,x,y,z)∂y + η(u,t,x,y,z)∂z. 
In accordance with the symmetry invariant conditions [35–37], we stipulate that the second prolongation of the infinitesimal 
generator (2.2) leaves the solution space of PDEs (3.1) invariant, i.e., 

 
Where ∆= 

 ( ), and considering Pr[2]Y as the second-order prolongation 
of the vector field (3.1), we split Eq. (2.3) with respect to the derivatives of u leading to an overdetermined system of equations 

for the infinitesimals λ(u,t,x,y,z)+ψ(u,t,x,y,z)+ ξ(u,t,x,y,z) + ϕ(u,t,x,y,z) + η(u,t,x,y,z), and the functions fu and fuu. The following 
equation is obtained from (3.6)-(3.11). In the next section, the second-order prolongation is applied to find the Lie point 
symmetries and exact solutions of Eq. (3.1). 
 
3 Classification and Exact Solutions for the (1 + 3) Dimensional Generalized Modified Schro¨dinger Equation 
(GMSE). 

 . (3.1) 
In this section, we prompt the whole classification of the classical Lie symmetry and exact solution of (1 + 3) dimensional 
GMSE. The given equation is 

, (3.2) 
 
where the function fu and fuu are arbitrary. 

• ϕ is a potential. 
• u is a wave function. 

• ℏ is a plank’s constant, . 
• m is the particle mass. 
• ι˙ a mathematical quantity which is called ”imaginary number”, which is√ 

 
 equal to −1. 
• t is time, which describe how ”u” modify its structure over time.. 
In a vector fields LPS are 
(3.3) 

, 
ξi = ξi( u,t, x, y, z), i = 1,2,3,4, for above equation. The invariant condition is 
 



Muhammad Hussan 1029 

 

www.KurdishStudies.net 

Q = ξ1ut + ξ2ux + ξ3uy + ξ4uz + ϕ = 0. (3.4) 
The Lie point symmetry generators of equation (3.2) are obtained By imposing the condition of invariance 

 
Where Y [2] is the invariant transformation’s of 2nd order prolongation of Y and |(3.2) is the application of the surface conditions 
which are invariant. In above Y [2] can be derived, After expansion and separation with respect to the powers of various 

derivatives of u, a structure of linear PDEs with new coefficients is provided. ξ1, ξ2, ξ3, ξ4 and ϕ. From Eq (3.2), determining 
forms are 
ξu1 = 0,ξu3 = 0,ξu2 = 0,ξuu2 = 0,ξuu1 = 0,ξuu3 = 0,ξut1 = 0,ξuu4 = 0, ξut2 = 0,ξxu2 = 0,ξtu3 = 0,ξuy1 = 0,ξxx3 = 0,ξxx1 = 
0,ξxx4 = 0, . (3.6) 
The remaining determining equations are determined by using the values of the equation (3.6). 

2ℏιmξt2 − 2mfuξxx2 − 4mϕxfuu + 4mfuϕxu − 2ℏ2ϕxu+ 

h2ξxx2 + ℏ2ξtt2 = 0, 
(3.7) 

, (3.8) 

, (3.9) 

, 
(3.10) 

. 
From equation (3.9) 

(3.11) 

 . (3.12) 
After taking the derivative of equation (3.11) and using values of equation 
(3.12), then Simplifying equation is 

 
 
Taking the derivative of equation (3.12) w.r.t.’u’. 

.(3.14) 

Simplifying equation using the value of and in equation (3.13). 
 
2mfuuu2 fuuuu − 8mfuufuuu2 fuuuu + 4fuufuuufuuuu + 8mfuu2 fuuu2 fuuuuu 
 2 2 2 2 (3.15) 
−16mfuufuuuu − fuuuu + 4mfuufuuuu − fuuuuu = 0. 
Solving the remaining equation (3.15), involving the arbitrary function of the following form 

 , (3.16) 
(3.17) 
The method for calculating Lie symmetry transformations is as follows, using equation (3.16) and taking the first and second 
derivatie’s. 

 (3.18) 
fuu = aln(1 + tanu) + 2aln(tanu) + b. (3.19) 
 

3.1 GMSE Lie Symmetries Involving  

If  and fuu = aln(1 + tanu) + 
2aln(tanu) + b then equation (3.2) becomes 

 
Simplifying the Eq (3.20), which gives five LPS 

. (3.21) 
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3.2GMSE Exact Solutions Involving  

 

 
Next, we obtain the ES of equation (3.20) using the aforementioned five LPS. 
 

. (3.22) 
Now, ES of equation (3.2), Y = Y1+αY2+βY3+γY4,+ψY5. The operator’s for similarity variables are 
 

. (3.23) 
Infinitesimal operators include 
 

,(3.24) 
 
where, ξ1 = 1, ξ2 = α, ξ3 = β, ξ4 = γ, η1 = ψ . The change of coordinates to canonical form 
v(r,s,w) + ψt = u(t,x,y,z),w = −αt + x,r = −βt + y,s = −γt + z,i = t. 
(3.25) Calculating the required partial derivative;s from equation (3.25). We get 
 ux = vw,uxx = vww,uy = vr,uyy = vrr,uz = vs,uzz = vss , (3.26) 
ut = −αvw − γvs − βvr + ψ,utt = α2vww + 2αγvsw+ 
(3.27) 

 

2αβvrw + 2βγvrs + γ vss + β vrr , 
u2

t = ψ2 − 2αψvw + α2vw − 2ψγvs + 2αγvwvs + γ2vs− 
(3.28) 2 
2ψβvr + 2αβvwvr + 2βγvsvr + β vrr . 
Simplifying equation using the values from (3.25) to (3.28) and values of fu and fuu in equation (3.20). 
 

 (3.29) 

Simplifying equation using m = j,iℏ = k in equation (3.29). 
 

 (3.30) 
Solving the equation (3.30) which give four LPS. 
 

 . (3.31) 
Infinitesimal operators include 
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, (3.32) 
where, ξ3 = β, ξ2 = α, , ξ1 = 1, η1 = ψ . The coordinates transformation in canonical form: 
 q(m,n) + ψr = v(r,s,w),m = −br + w,n = −ar + s,p = r . (3.33) 
 
Finding the relevant partial derivatives from the equation (3.33). We get 
vr = ψ − aqn − bqm,vrr = a2qnn + 2abqmn + b2qmm,vrs = −aqnn − bqmn , 
(3.34) 
vs = qn,vss = qnn,vw = qm,vww = qmm,vsw = qmn,vrw = −aqmn − qmm , 
(3.35) 

vsvw = qmqn,vwvr = ψqm − aqmqn − bqmqm , (3.36) 

  

vrvs = ψqn − aqnqn − bqmqn . (3.37) 

Reducing the equation with the values derived from the previous equations (3.33) to (3.37) in equation (3.30). 

 
Solving equation (3.38) which give three Lie point symmetries. 

. (3.39) 
The infinitesimal operator is 

, (3.40) 

where, η1 = ϕ , ξ1 = 1, ξ2 = α . The coordinates transformation in canonical form: 
 q(m,n) = p(l) + νm,l = −dm + n,o = m. (3.41) 
Calculating the required partial derivative;s from equation (3.41). 
qm = ν − dpl,qmm = d2pll,qmqn = νpl − dp2l , 
(3.42) 
qn = pl,qnn = pll,qmn = −dpll . 
These transformations which are used to diminish the modied Schro¨dinger equation to ODE in the following steps. In the 
first step equation is diminished to one dimentional. Using the values from the equation (3.41) to (3.42) in equation (3.38), 
then the simplify equation is 
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Now, we will examine different cases of solutions to the equation (3.43). 
Case 1: When α = 0,β = 0,γ = 0,i = 0,ψ = 0,ν = 0,p = 0,o = 0,a = 0,b = 0,c = 0,d = 0, 

 . (3.44) 
Now, solution takes u(t,x,y,z) 

 , (3.45) 
is a solution of (3.20). 
 
Case 2: When a = 0,b = 0,c = 0,d = 0,γ = 0,α = 0,β = 0, 

. (3.46) 
Now, solution takes u(t,x,y,z) 

 
is ES of Eq. (3.20). 
 
Case 3: When α = 0, a = 0,b = 0,β = 0,c = 0,d = 0, 
(3.48) 

. 
Now, solution takes u(t,x,y,z) shape 

 
satisfies equation (3.20). 
Case 4: When a = 0,c = 0,d = 0,b = 0 
(3.50) 

. 
Now, solution takes u(t,x,y,z) shape 

 (3.51) 
is a solution of (3.20). 
 
Case 5: When α = 0,a = 0,b = 0,c = 0,d = 0,γ = 0 

 
Now, solution takes u(t,x,y,z) shape 
 

  
(3.53)is a solution of (3.20). 
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The classical Lie symmetry  
transformations are calculated by the following way, using equation (3.17) after taking the first and second derivative’s. 

(3.54) 
(3.55) 
3.3GMSELie Symmetries  

Involving  

If  and fuu = aebu + cu + d then equation (3.2) becomes 
(3.56) 

. 
Solving the equation (3.56) which give to five LPS 

. (3.57) 
 
 

3.4GMSE Exact Solutions Involving  
Next according to the above five Lie point symmetrieswe we find ES of equation (3.56) 

. (3.58) 
Now for ES of equation (3.56) using Y = Y1+αY2+βY3+γY4,+ψY5. The analogy variables for operator are 

. (3.59) 
The infinitesimal operator include 

,(3.60) 
where, ξ1 = 1, ξ2 = α, ξ3 = β,ξ4 = γ, η1 = ψ. The change in coordinates of canonical form: 
r = v(r,s,w) + ψt = u(t,x,y,z),−βt + y,s = −γt + z,w = −αt + x,i = t. 
(3.61) Finding the relevant partial derivatives from the equation (3.61). We get 
ux = vw,uxx = vww,uy = vr,uyy = vrr,uz = vs,uzz = vss , (3.62) 
ut = −αvw − γvs − βvr + ψ , (3.63) 
utt = α2vww + 2αγvsw + 2αβvrw + 2βγvrs + γ2vss + β2vrr . (3.64) 

Finding value of u2
t from value of ut. 

u2
t = ψ2 − 2αψvw + α2vw − 2ψγvs + 2αγvwvs + γ2vs − 2ψβvr+ 

 2 (3.65) 
2αβvwvr + 2βγvsvr + β vrr . 
 
Simplifying equation using the values from (3.61) to (3.65) and values of fu and fuu in equation (3.56). 

 
Using m = f,iℏ = k in equation (3.66). 
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 (3.67) 
Solving the equation (3.67) which give fourLPS. 

 . (3.68) 
The infinitesimal operator is 

, (3.69) 
where, η1 = ψ , ξ1 = 1, ξ2 = α, ξ3 = β . The change of coordinates to canonical form: 
 v(r,s,w) = q(m,n) + ψr,m = −br + w,n = −ar + s,p = r . (3.70) 
Finding the relevant partial derivatives from the equation (3.70). We get 
vr = ψ − aqn − bqm,vrr = a2qnn + 2abqmn + b2qmm,vs = qn,vss = qnn , 
(3.71) 
vw = qm,vww = qmm,vsw = qmn,vrw = −aqmn − qmm,vrs = −aqnn − bqmn , 
(3.72) 

vsvw = qmqn,vwvr = ψqm − aqmqn − bqmqm , (3.73) 

vrvs = ψqn − aqnqn − bqmqn . (3.74) 

Reducing the equation with the values derived from the previous equations (3.71) to (3.74) in equation (3.67). 

 
Solving the above determining equations give to three LPS 

. (3.76) 
Operator function in infinitesimal form: 

, (3.77) 

where, η1 = ϕ,ξ1 = 1,ξ2 = α . 
The change in coordinates of canonical form: 
 
q(m,n) = p(l) + ηm,l = −dm + n,o = m. (3.78) 
Calculating the required partial derivative;s from equation (3.78). 
qm = η − dpl,qmm = d2pll,qn = pl,qnn = pll,qmqn = ηpl − dp2l ,qmn = −dpll . 
(3.79) These transformations are used to diminish the GMS equation to ordinary differential equation in the following steps. 
In the 
 
1st step equation is diminished to one dimensional. 
Reducing the equation with the values derived from the previous equations (3.78) to (3.79) in equation (3.75). 
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Now, we will examine different cases of solutions to the equation (3.80). 
 
Case 1: When α = 0,β = 0,γ = 0,η = 0,i = 0,ψ = 0,p = 0,o = 0 
 

 . (3.81) 
Now, solution takes u(t,x,y,z) shape 

 
is ES of Eq. (3.56). 
 
Case 2: When η = 0,α = 0,β = 0,a = 0,b = 0,c = 0,d = 0,γ = 0, 
 

 . (3.83) 
Now, solution takes u(t,x,y,z) shape 

 
is ES of Eq(3.56). 
Case 3: When α = 0,β = 0,a = 0,b = 0,c = 0,d = 0,γ = 0,ψ = 0, 
 

 (3.85) 
Now, solution takes u(t,x,y,z) shape 

 , (3.86) 
is ES of Eq(3.56). 
Case 4: When a = 0,b = 0,c = 0,d = 0,γ = 0,α = 0,β = 0, 

 . (3.87) 
Now, solution takes u(t,x,y,z) shape 

 
is ES of (3.56). 
 
Case 5: When α = 0,i = 0,a = 0,b = 0,c = 0,d = 0,β = 0,γ = 0, 

. (3.89) 
Now, solution takes u(t,x,y,z) shape 
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is a solution of (3.56). 
 
3.5Discussion 
In this section we explores the invariant solutions of the GMS equation using the Lie method. We start by applying the second-
order prolongation formula to determine the unknown functions involved in the equation. The application of the second-
order prolongation formula to the GMS equation is presented in Section 2. Afterward, we derive the Lie point symmetries of 
the equation to incorporate the values of these functions. Using invariant transformations, we reduce the given PDEs to ODEs 
and find their exact solutions. 
 
4 Conclusion 
Through the Lie approach, we found various solutions for the GMS equation and determined its Lie point symmetry group. 
Applying symmetry reduction three times on the given GMS PDEs results in their transformation into ordinary differential 
equations (ODEs). By applying symmetry reduction three times to the given GMS PDEs, we convert them into ordinary 
differential equations (ODEs) and construct their invariant solutions. Closed form exact solutions for the GMS equation were 
achieved through the combination of constructed Lie symmetries. It is important to note that the symmetry approach used to 
obtain closed-form solutions for the given equation has not been reported in previous literature. Consequently, the findings 
in this work are new and serve as an extension of the research on the GMS equation, as discussed in the article. 
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