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Abstract 
This paper concentrates on traveling wave approximation, phase plane, and stability analysis of non-Newtonian fluids. The 
analysis is extended for the dynamical system theory of the problem to understand the flow behavior. Higher-order nonlinear 
autonomous differential equations are studied. These equations characterize the trajectories of the particles. The phase plots 
are drawn to show the qualitative behavior of the fluid flow. Equilibrium points are calculated and bifurcation diagrams are 
drawn for the complete range of parameters. Equilibria plots depict a detailed discussion of various flow patterns developed 
for the complete range of flow variables contrary to the current which describes the topological structure at some particular 
value of the parameter. Also, compare our numerical solution to the HAM solution and get an exceptional result. 
 
Keywords: Third grade fluid, Traveling wave, Dynamical theory, Stability analysis, Bifurcation theory 
 
1. Introduction 
The modeling of materials with dense molecular structures, such as geological materials, polymer solutions, slurries, 
hydrocarbon oils, blood, and paints, is part of the study of non-Newtonian fluids. These materials have viscoelastic properties, 
similar to liquids and solids. As a result, understanding the complicated behavior and features of non-Newtonian fluids has 
never been more essential. Non-Newtonian fluid flow issues have a wide range of technological applications in engineering 
and industry. In comparison, the non-Newtonian fluids are un-identical with Newtonian fluids. As a result, one cannot 
substitute the behavior of Newtonian fluid with that of non-Newtonian fluid in feasible uses also, to gain a comprehensive 
understanding and enhance usage in the various manufacturing processes it is crucial to analyze and understand the behavior 
of non-Newtonian fluids. 
The class of Rivlin-Ericksen fluids of differential type [16] is a generally recognised model among non-Newtonian fluids. 
Rivlin-Ericksen fluids have received specific attention in order to characterise a variety of unusual non-Newtonian fluid 
properties such as rod climbing, shear thinning, shear thickening, and normal stress effects. A review of the literature reveals 
that substantial attention has been paid to the flow difficulties of a second grade fluid [7, 8, 20, 21]. A second grade fluid 
model is the simplest subclass of differential type fluids for which an analytic result may be realistically expected. The governing 
equations for a second grade fluid are linear in most flow features. Although a second grade fluid model for steady flows is 
used to forecast normal stress differences, if the shear viscosity is considered to be constant, it does not correlate to shear 
thinning or thickening. As a result, third grade fluid may well explain several studies. A third-grade fluid mathematical model 
provides a more accurate explanation of the behaviour of nonNewtonian fluids. A third grade fluid model is an additional 
attempt to investigate the flow characteristics of non-Newtonian fluids. As a result, in this work, a third-grade fluid model was 
explored. This model has been shown to incorporate non-Newtonian effects such as shear thinning and thickening, as well as 
normal stress. Fosdick and Rajagopal [9] performed a thorough thermodynamic analysis of third-grade fluid and demonstrated 
the constraint on the stress constitutive equation. They explored various stability properties of third grade fluids and 
discovered that they differ from Newtonian and second grade fluids. Furthermore, Refs [1, 3, 10, 11, 12, 14, 15, 18, 23] provide 
several important messages dealing with third-grade fluid flow difficulties. 
The motivation of this work is to investigate further properties of Non-Newtonian fluid. We in this paper have adopted the 
traveling wave approximation and then apply the dynamical systems theory to do the qualitative analysis of the solution of the 
problem [6]. This approach is a great success in finding the behavior of the complex fluids and has been rarely adopted in the 
reported studies. 
The motivation of this work is to investigate further properties of Non-Newtonian fluid by applying the theory of dynamical 
systems, traveling wave approximations, and bifurcation analysis on the problem taken from the literature [6]. The dynamical 
systems are a contemporary advancement to find the nature (qualitative) of the problem by studying the stability through the 
bifurcation diagrams [2, 4, 5, 13, 19, 22]. The stability of the solution is not only significant mathematically nevertheless it is 
necessary to figure out if the solution remains credible as the time becomes infinite. Also, the qualitative behavior of the 
problem is very responsive to the involved parameters and thus depends on these parameters essentially. These important 
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features are highlighted in this research. The discussion is accomplished by inspecting the equilibria of the system and 
illustrating the mathematical model. These points (stagnation/critical points/equilibrium points/fixed points) are steady-state 
solutions. The stagnation points will be discriminated according to their qualitative nature as nodes, centers, and foci by 
looking at the eigenvalues. Local behavior is studied by performing the linear stability analysis with a discernment that the 
global behavior can be inferred. The plotted sketches will depict the qualitative nature of the solution. The bifurcation diagrams 
against various parameters are plotted to predict the qualitative behavior. 
Following is the layout of the current paper: In section 2, the mathematical formulation of the physical model is given. Section 
3 deals with the traveling wave solution for the unsteady flow of a third-grade fluid model embedded in a porous medium. 
The dynamical system theory is applied to the reduced ordinary differential equation. The qualitative behavior of the calculated 
critical points is decided based on eigenvalues. The phase plots are drawn against various characterizing parameters. It is 
observed that a higher-order dynamical system may help to investigate the flow behavior adequately. In section 4, the Normal 
mode method [24] is applied to check the stability of the problem. In section 5, the bifurcation diagrams are drawn against 
various characterizing parameters which shows the validity of the solution as time goes to infinity. Section 6 shows the 
validation and numerical schematic of the problem. The conclusion is presented at the end. 
2. Mathematical Formulation 
A Cartesian coordinate system OXY Z is considered in which y-axis is in the vertical (upward) direction and x-axis is along 
the direction of the porous plate at y = 0. The porous half space y > 0 is occupied by the fluid. As the plate is infinite in the 
XZ-plane, all the involved quantities (physical) excluding pressure depend on y. Consider a velocity of the form 

U , (1) 
where u1 is the velocity of the fluid in x-direction and W0 < 0 denotes injection or blowing velocity whereas W0 > 0 represents 
suction velocity. Eq. (1) satisfies the law of conservation of mass for incompressible fluid, i.e. 

∇ · U = 0. 
Unsteady motion by a porous medium is given by (2) 

 
we know that 

. 
Incorporating in Eq. (3) we get, 

, 

(4) 

Where ρ is the fluid density,  is the material time derivative, T is the Cauchy stress tensor and r is the Darcy’s resistance due 
to porous media. 
The constitutive equation for a third-grade fluid is given in the literature 

T . (5) 
From above equation, p defines pressure, I denotes the identity tensor, µ reads as the dynamic viscosity, the material constants 

are denoted by α1,α2, and β3 and A are the Rivlin-Ericksen tensors that are defined in following relations:- 
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By Darcy’s law, we have 

 r . (8) 

Here ϕ is the porosity, κ is the permeability of porous medium, V denotes apparent viscosity that varies from fluid to fluid. 
The apparent viscosity for unsteady unidirectional flow of a third grade fluid over a porous plate, is calculated as 

 V , (9) 
using Eq. (9) in Eq. (8), over a porous plate the x-component of r1 for unidirectional flow 
is 

 . (10) 
All the required calculated terms and incorporated in Eq. (3) we get the following governing equation in the absence of the 
modified pressure gradient i.e. 

 

 

(11) 
The exact and approximate solution of Eq. (1) is obtained by employing the following initial and boundary conditions 

 
Incorporating the following dimensionless quantities given as 

, 
Hence the non-dimensional form of Eq. (11) and corresponding initial and boundary conditions are given as, 

(12) 
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We ignore bars of non-dimensional quantities just for the simplicity. Again writing Eq. (12) as 

. (14) 
 
3. Traveling wave approximation and Dynamical systems theory 
Traveling wave solutions are one of the exclusive type of group invariant solutions which are invariable under a linear 
combination of time and space translations symmetry generators. It can be seen that the Eq. (14) concede the Lie point 
symmetry generators. Hence we can devise the traveling wave solutions for the model equation. The solution (invariant) 
corresponding to the generator Y = X1 +cX2 which denotes the traveling wave solution with constant wave speed c. This 
solution under the operator Y is given by 
 u1(y,t) = f(η), where η = y − ct. (15) 
By changing the variables, the equation (reduced) for Eq. (14) is. 

 . (16) 
It can be seen that Eq. (16) is nonlinear in nature and to obtain the exact or numerical solution is tedious. After applying the 
traveling wave approximation we then apply the theory of dynamical systems to study the qualitative behavior of the problem. 
This theory has been rarely adopted in the literature and only a few papers have addressed this issue. To proceed further in 
this regard we have converted the third order differential equation into the system of three first order differential equations 

, 

. (17) 
The next step is the calculation of stagnation points/equilibrium points. These points are in fact the spatial locations at which 
the system is at rest or in steady state. For this we will solve Eq. (17) simultaneously and obtain a single critical point i.e. (0,0,0). 
The Jacobian matrix A at critical Point (0,0,0), is calculated to check the stability of the problem. 

A  
The characteristic polynomial i.e. det(A-λ I) = 0 is computed for the evaluation of eigenvalues of the problem given in Eq. 
(17) 

,(18) 
Linear stability analysis is executed to study the behavior (qualitative) on the basis of which global behavior can be visualized. 
In addition, the qualitative nature is very conscious to the dependent parameters. Hence it is essential to determine the plausible 
range of the important parameters. We have studied three cases based upon these parameters to determine the topological 
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structure. We fix our parameters as µ∗ = α∗ = 0.5;ϕ∗ = 0.2 and the following three cases will depicts the dynamics of the 
problem. 
3.1. Case 1: (W0 + c) > 0 
For the specific values of the parameters involved, the spectrum of the matrix that corresponds to the equilibrium solution 
(0,0,0) is 

Eigenvalue λ1 = 1.6431 λ2 = −1.2412 λ3 = 0.0981 

Eigen vector 0.3017 -0.4511 -0.9952 

 0.4957 0.5599 -0.0976 

 0.8144 -0.6950 -0.0096 

Table 1: W0 = c = 1 
 

 
Figure 1: Eq.(17) is linearized about the stagnation point (0,0,0); pictorialization within the configurating box 

showing the plane of the unstable manifold and the line of the stable manifold. 
 

Figure 1 represents the robust behavior of the linearized equation. The plane in the configurating box is the unstable manifold 
corresponding to the eigenvalues 1.6431 and 
0.0981 whereas the line is the stable manifold representing the eigenvalue -1.2412. 
 
3.2. Case 2: (W0 + c) < 0 
For the specific choice of the characterized parameters, the spectrum of the Jacobian matrix that corresponds to the 
equilibrium solution (0,0,0) is 

Eigenvalue λ1 = −1.6431 λ2 = 1.2412 λ3 = −0.0981 

Eigen vector -0.3017 -0.4511 -0.9952 

 0.4957 -0.5599 0.0976 

 -0.8144 -0.6950 -0.0096 

Table 2: W0 = c = −1 

 
Figure 2: Eq.(17) is linearized about the stagnation point (0,0,0); pictorialization within the configurating box 

showing the plane of the stable manifold and the line of the unstable manifold. 
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Figure 2 shows the robustness of the linearized equation. The plane in the configurating box is the stable manifold 
corresponding to the eigenvalues -1.6431 and -0.0981 and the line drawn is the unstable representing the eigenvalue 1.2412. 
The trajectories starting in the stable manifold eventually dive into the direction of unstable manifold. Note that the flow of 
the original nonlinear equation drawn in the figure coincide the ”nonlinear” only in the vicinity of the equilibria. 
 

3.3. Case 3: ϕ∗ = 1.6 
For the particular values of the parameters involved, the spectrum that corresponds to the critical point (0,0,0) is 

Eigenvalue λ1 = −1.5158 λ2 = 1.0079 + 1.992i λ3 = 1.0079 − 0.1992i 

Eigen vector -0.3415 0.5194-0.2137i 0.5194+0.2137i 

 0.5176 0.5661-0.1119i 0.5661+0.1119i 

 -0.7845 0.5929 0.5929 

Table 3: ϕ∗ = 1.6 
 

 
Figure 3: Eq.(17) is linearized about the stagnation point (0,0,0); pictorialization within the bounding box 

showing the plane of the unstable manifold. 
 

Figure 3 represents the dynamics of the linearized equation. The plane in the configurating box is the unstable manifold 
corresponding to the eigenvalues 1.0079 + 0.1992i and 
1.0079 − 0.1992i. 
 
4. Stability Analysis using Normal Mode: 
Stability analysis allows us to make an algebraic determination of critical point stability, which tells us how rapidly neighboring 
trajectories converge/diverge from the equilibrium points. Now we will study the behavior of third-order PDE. 
Frrom Eq. 14, the general third-order PDE can be written as: 

ut = µ∗uyy + α∗uyyt − α∗W0uyyy + β1(uy)2uyy − β2u(uy)2 + W0uy − ϕ∗u. (19) 
 
Linearized above Equation 

µ∗uyy + α∗uyyt − α∗W0uyyy + W0uy − ut − ϕ∗u = 0. 
Now, proposing the normal mode solution [24] of Eq. (20) and define: 

(20) 

 , (21) 
putting Eq. (21) in Eq. (20), 

 , (22), 
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Therefore Ω < 0. As we know that when Ω < 0 our equation is strictly stable. We can say that our Eq. (20) is strictly stable. 
Also, knowing that if linearized equation is stable then it’s nonlinear equation is also stable.So our Eq. (19) which is nonlinear 
in nature is also stable. 
 
5. Bifurcation Analysis 
The dynamical system theory is a contemporary approach used to study the topological behavior of the problem by discerning 
the stability. The stability of the solution is equally important but it essential to pin down the validity of the solution as time 
goes to infinity. In addition, the qualitative behavior is very delicate to the characterizing parameters. Hence, it is essential to 
determine the plausible range of the important parameters which can be discussed by drawing the bifurcation diagrams with 
respect to the parameters involved. These diagrams will predict the qualitative behavior of the problem depending upon the 

various parameters in advance e.g. W0 and ϕ∗. 
 

 
Figure 4: Bifurcation diagram plotted between W0 and y3. Here W0 + c > 0 

 

 
Figure 5: Bifurcation diagram plotted between W0 and y3. Here W0 + c < 0 
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Figure 6: Bifurcation diagram plotted between ϕ∗ and y3 

 
6. Numerical Schematic and Validation 
The numerical solution of the nonlinear ordinary differential equation, given in Eq. (14) alongwith the boundary conditions 
specified in Eq. (13), is obtained using Finite Difference Method and Newton Raphson Method. We have used the central 
finite difference relations in the interior domain as well as the right boundary whereas forward finite difference relations are 
used at the left boundary, to dicretise the derivatives. The resulting system of equations are nonlinear which are then solved 
iteratively using the Newton’s method. For the numerical scheme, the spatial domain is disretised using the step size ∆η = 
10−2 and the Newton’s method is iterated until the Euclidean norm between the consecutive solutions is less than 10−10. The 
validation of the numerical solution is established the convergence of the solution subject to different initial conditions as 
discussed below. 

 
Figure 7: (a) The different initial conditions used in the iterative Newton’s method, (b) shows the final solution 

that the Newton’s method converges to with a tolerance of 10−10. In (a), black line with downward triangles 
represents a linear curve satisfying the boundary conditions, blue line with upward triangles is the solution of the 

associated linear problem and red line with squares is the zero solution (in the interior domain). 
 
The results presented in Figure 7 shows that the iterative Newton’s method converges to the same solution for the three 
different initial conditions used in the test run. The curves in Figure 7(a) represented the various initial conditions used in our 
code. The black curve with downward triangles represent a simple linear curve satisfying the boundary condition. The blue 
curve with upward triangles is the (Finite Difference) numerical solution of the corresponding linear problem. As a particularly 
tough choice, due to presence of sharp gradients, we chose a step function which satisfies the boundary conditions and stays 
zero in the interior domain (shown in red with squares). For all three initial conditions, the interior procedure converges to 
the same solution which can be seen in Figure 7(b). 
As an additional check, we compare our numerical solution with HAM solution of [6] 
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Figure 8: A comparison between our Numerical solution and the HAM solution given in [6]. The solid curve in 

black represents our numerical solution whereas red crosses are from the HAM solution of [6]. For this particular 

simulation, the flow parameters are set to c = 0.2,µ = α = 0.5,ϕ = 0.2,β1 = β2 = 1 and w0 = 1. 
 

for c = 0.2,µ = α = 0.5,ϕ = 0.2,β1 = β2 = 1 and w0 = 1. Figure 8, the solid curve shown in black represents our numerical 
solution whereas the red crosses are the (discrete) data points picks up from HAM solution of [6] for this particular case. It 
can be seen in the figure that the red crosses either overlap or reside in close proximity of the black curve showing an excellent 
agreement between our numerical solution and the HAM solution of [6]. The minor deviation of HAM results from our 
numerical results could possibly be due to the fact that the discrete points (red crosses) representing HAM solution are picked 
up from [6] using webplotdigitizer [17]. 
Figure 9 shows velocity profiles for different values of the suction parameter w0. The result shown in solid black with upward 
triangles represent the solution for w0 = 0 i.e. 

 
Figure 9: The velocity profiles, in terms of the similarity variable f, for the non-porous case (w0 = 0, shown by solid 

black line with upward triangle markers), for injection (w0 = −1, shown by dashed red line with square markers) 
and for suction (w0 = 1, shown by dash-dotted blue line with downward triangle markers). 

 
considering boundary to be non-porous. The dashed red curve with square markers shows the results corresponding to the 
injection case w0 = −1 whereas the results for the suction (w0 = 1) are given by dash-dotted blue curve with downward triangles. 
It should be noted that the physical problems, solved numerically, has an infinite domain but for numerical schemes it is 
necessary to consider a finite domain. As the physical effect diminishes far away from the source (η = 0), it is appropriate to 
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truncate the domain (for numerical convenience) at some suitable location far away from the source η = 0. For this particular 
reason, we had to consider a longer domain for the injection case to make sure that the domain is long enough to allow the 
accelerating effects being propagated from the source to dissipate. As for injection, the system receives an additional supply 
of momentum from the accelerated fluid steam being injected into the system due to which the velocities are propagated to 
larger distances compared to other cases (suction and non-porous). It is observed that the velocities for the injection case are 
larger than the non-porous case due to additional supply of momentum (energy) contributed by the fluid stream injected into 
the system. On the contrary, the velocities for the suction case are smaller than that of non-porous case due to the fact that 
the system experiences loss of energy due to the fluid escaping from the system. 
 
7. Conclusion 
The transitional symmetries are utilized for the reduction of the governing nonlinear PDEs equation of unsteady flow of an 
incompressible third-grade fluid, bounded by porous plate (infinite) which is moving in its plane with an arbitrary velocity. 
These nonlinear equations are reduced by traveling wave approximation and thereafter dynamical system theory is employed 
to study the qualitative behavior. Bifurcation diagrams and phase plots are plotted to predict the topological structure for the 
complete range of parameter values. With the help of boundary conditions, the numerical solution of the governing equation 
is found using the Finite Difference Method and the Newton-Raphson Method. The final solution is with a tolerance of 10−10 

using the iterative Newton’s method. We also checked our numerical solution against the HAM solution and found excellent 
agreement between both solutions. 
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