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Abstract 
Statistical theory frequently involves adding an extra parameter to standard distributions. This work introduces a novel 
distribution called the Exponent Beta Pareto distribution, which includes an additional parameter. Several aspects of the 
suggested distribution are determined, including the moment generating function, mode, quantiles, entropies, mean residual 
life function, stochastic orders, and order statistics etc. The parameters of the proposed distribution were estimated using the 
maximum likelihood estimation technique. The performance of the proposed distribution was evaluated on two real datasets. 
The proposed distribution outperforms over the various versions of Pareto distributions based on model selection criteria’s. 
 
Introduction 
In statistical theory, it has become normal practice to improve on the standard distributions over the past few decades. To 
create new distributions, generators are usually used to add more parameters to the baseline distributions or merge existing 
ones [1].The goal is to (provide better fit of the complex data) improve the analysis of complicated data structures by 
simplifying classical distributions. [2] And [3] proposed a way for incorporating a new parameter into current distributions. [4] 
Introduced beta-generated distributions, where the parent distribution is beta and the baseline distribution is the cumulative 
distribution function (cdf) of a continuous random variable. [5] Replaced the beta distribution with the Kumaraswamy 
distribution, modifying the notion from [4]. Furthermore, [6] suggested the T-X family of continuous distributions. [7] 
Provides a detailed review of constructing univariate continuous distributions. More recently, [8] proposed a novel approach, 
called alpha power transformation (APT), for (the insertion of an extra parameter) including an additional parameter in a 
continuous distribution. The objective was to add skewness into the baseline distribution. The alpha power transformation is 
described as follows: 
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The generator transformed a one-parameter exponential distribution into a two-parameter alpha power distribution. The 
proposed distribution's features were explored, including explicit formulas for the survival and hazard functions. Quantiles, 
medians, moments, moments generating functions, order statistics, mean residual life function, and entropy. The shape 
behavior of pdf, hazard rate function, and survival function were analyzed. [9] And [1] employed the above generator to 
convert a two parameter Weibull distribution to a three-parameter alpha power distribution. Researchers have used the alpha 
power transformation to create various distributions, such as the generalized exponential distribution [10], Lindly distribution 
[11], extended exponential distribution [12], and inverse Lindly distribution [13] etc. The Pareto distribution is widely used to 
model heavy-tailed phenomena [14]. It has numerous applications, including actuarial science, survival analysis, economics, 
life testing, hydrology, finance, telecommunications, reliability analysis, physics, and engineering [15-17]. [18] Found that the 
Pareto distribution is effective for predicting losses in insurance companies, as well as assessing hospital liability. [16] Used 
the Pareto distribution to model sea clutter intensity returns. [19] Used the Pareto distribution to investigate wealth in society. 
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[20] Used a generalized Pareto distribution to describe exceedances over a margin in flood control. There are many different 
forms of Pareto distributions and their generalizations in the literature. According to [21], the first-kind Pareto distribution 
has the following CDF: 
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The model comprises two parameters: α  and k, where k represents the data's lower bound. [18] normalized the data by 
dividing each observation by a pre-selected lower bound, yielding k = 1. Finally, the CDF and PDF of the Pareto distribution 
can be represented as: 
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Where β represents the scaling parameter. The Pareto distribution's falling hazard rate function and reversed J-shaped pdf 
may not always provide a good match to data. Risk and loss projections can be made using numerous methods, such as 
machine life cycle. Human mortality exhibits more adaptable behaviour. That is why scholars offered several modifications 
and extensions to the Pareto distribution with varying numbers of parameters [17]. Examples include Generalised P [22], 
Exponentiated P [23, 24], Beta P [25], Beta Generalised P [26], Weibull P [27,28], Kumaraswamy P [29], Kumaraswamy 
Generalised P [30], Exponentiated Weibull P [31], The Burr X-P [17], and Exponentiated Generalised P [14]. The goal of this 
work is to propose a new and more flexible distribution, which we call the Exponent Beta Pareto (EBP) distribution, by adding 

an additional parameter to the Basic Pareto distribution in order to get an adequate match. Numerous features of the EBP 
distribution are investigated in the next section, along with more appealing forms for the quantile function, median, mode, 
moments, order statistics, mean residual life function, and stress strength parameter. Lemmas 1 and 2 contain formulae for 
stochastic ordering, Shannon, and Renyi entropies, respectively. In addition to simulation studies, the following section 
discusses a method for estimating parameters using maximum likelihood. Two real-world applications are utilised to assess 
the effectiveness of the suggested paradigm. Conclusions are offered in the final part. 
 

Exponent Beta Pareto (EBP) distribution 
 

Random variable X is said to have a EBP distribution if its pdf and cdf is of the form 
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The following Figure 1 represents the CDF and PDF of the EBP distribution respectively. 
 

 
Figure 1: CDF and PDF of the EBP distribution 

The survival (reliability) function and hazard rate function are obtained, respectively, as follows: 
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The following Figure 2 reprenents the hazard function of EBP 
 

 
Figure 2: hazard function of EMAPP 

 

Henceforth, a random variable X that follows the distribution in (6) is symbolized by X~ EBP (α, β, ). 

                        
Quantile function 
Quantile function is defined as an inverse of the distribution function. Consider the identity 
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Median of EBP distribution can be obtained by putting U = 1/2, that is, 
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Which is required Median. 
 
Mode 
The mode of the distribution can be found by solving the following equation 
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d
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By taking the derivative of Eq (6) and equating it to zero and solving for x, mode becomes 
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Mode of the distribution satisfy the above equation. 
 
Moments 
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The moment generating function of EBP P distribution is given by 
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Lemma 1: Let X1~EMAPP (α1, β, ) and X2~ EBP (α2, β, ,) be two independent random variables. If 

α1 < α2 then 
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Order statistics 

The 𝑖th  order statistic is given by 
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Which is 𝑖th  order statistic expression. Put 𝑖 = 1 in (16), to have smallest (first) order statistic 
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Put 𝑖 = 𝑛 in eq (17), to get largest order statistic. 
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Which is largest order statistic. 
 
Stress-strength parameter 
Suppose X1 and X2 be two continuous and independent random variables, where X1~EBP(α1, 

Β, ) and X2~EBP (α2, β, ) then the stress strength parameter, say R, is defined as 

Let 𝑥, ∼ EBP(𝛼1, 𝛽,  ) 

 

𝑋2 ∼ EBP (𝛼2, 𝛽,  ) 
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Parameters estimation 
Maximum likelihood estimation 

Let X1, X2, X3, . . ., Xn be a random sample from EBP (α1, β, ) then the likelihood function is 

given by 
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Taking likelihood on both sides we have, 
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Again Differentiate equation (22) w.r.t “ ” we have 
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Again Differentiate equation (23) w.r.t “  ” we have 
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Mean residual life function 
Assuming X is a continuous random variable with a survival function as stated in Eq (8), the mean residual life function is the 
expected additional lifetime that a component has survived until time t. The mean residual life function, called μ(t), is given 
by 
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Using beta function in (34) 
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Using equation (8),(35),(37) in (31) we have  
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(38) 
Which is required solution  
The Shannon and Renyi entropy for a random variable X with Efficient modified alpha power Pareto distribution is as follows. 
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Proof: 
For EBP distribution, the Shannon and Renyi entropies are given respectively as 
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Simulations study 
Simulation study has been performed for average MLEs, Mean Square Error (MSE) and bias. 
W= 100 samples of size n = 70, 110, and 170 were produced form EMAPP distribution. Random 
numbers were generated by the following expression 
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where U is uniform random numbers with parameter [0,1] Bias and MSE are calculated by 
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1

1 1

1 ˆ( )
w

MSE b b
W =

= −  

Where b equals (α, β, ). Simulation results were obtained for various combinations of α,  and β. Table 2 displays the average 

MSE and bias values. These estimations are consistent and close to genuine parameter values based on the sample. Size rises. 
Increasing sample size leads to lower MSEs and biases for all parameter combinations. The MLE technique accurately 
estimates EBP distribution characteristics. 
 

Table 1: MSE and bias 

Parameters N MeanZ0 MeanZ1 MeanZ2 MSE0 MSE1 MSE2 BIAS0 BIAS1 BIAS2 

A0=2 
B0=3 
C0=4 
  w=100            

70 1.9623 2.1645 5.3930 0.18011 7.4612 7.3431 -0.0376 -0.8354 1.3930 

110 1.9798 2.8001 4.7052 0.1294 6.4172 4.4098 -0.0201 -0.1998 0.7052 

170 1.9791 2.9522 4.4471 0.0379 3.8103 2.4992 -0.0208 -0.0477 0.4471 

 
Applications 
Two data sets have been analyzed to demonstrate the performance of the proposed model. The first data set consists of 40 
wind related catastrophes used by [33]. It includes claims of $2,000,000. The sorted values, observed in millions are as follows. 
 

Table 2: Dataset 

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 

4.1 1.8 1.5 1.2 1.4 3, 1 7 2.3 1.6 2 

 
The second data set is related with the monthly actual taxes revenue in Egypt from January 2006 to November 2010.The data 
has been analyzed by [17, 34]. The data values are as follows.  
 

5.9 20.4 14.9 16.2 17.2 7.8 6.1 9.2 10.2 9.6 13.3 8.5 21.6 18.5 5.1 

6.7 17 8.6 9.7 39.2 35.7 15.7 9.7 10 4.1 36 8.5 8 26.2 21.9 

16.7 21.3 35.4 14.3 8.5 10.6 19.1 20.5 7.1 7.7 18.1 16.5 11.9 7 8.6 

12.5 10.3 11.2 6.1 8.4 11 11.6 11.9 5.2 6.8 8.9 7.1 10.8  

 
The fit of the proposed EBP distribution is compared with several other competitive models namely Pareto distribution by 
[35], generalized pareto Distribution, by [22] alpha power pareto Distribution by [29], Kumaraswamy Pareto distribution, by 
[14] ,[36] with the following pdfs 
 
Pareto Distribution 
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Kumaraswamy Pareto distribution 
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Alpha Power Pareto Distribution 
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Using R for Adequacy Model package, the goodness of fit test is used to evaluate the performance of EBP and other Pareto 
distributions. Goodness of fit criteria include the result of Akaike's Information Criteria. There are several information criteria, 
including AIC, CAIC, BIC, and HQIC. Tables 3 and 4 show the Kulmogrov-Smirnov test (KS) results and p-values. A model 
is called good fit if it meets all of the criteria and has a higher p value. 
 

Table 3 Goodness of fit result for data set 1. 



Muhammad Atif 1431 
  

www.KurdishStudies.net  

Distribution             MLE AIC CAIC BIC HQIC P-value 

EBP 2.3789 -2.8682 4.2116 36.4760 37.976 39.463 37.059 0.995 

PD 1.6970   44.4142 44.636 45.410 44.608 0.077 

GPD 3.0451 -0.7223  59.6902 60.396 61.681 60.079  

APPD 22.648 3.12158  36.8918 37.597 38.883 37.280 0.660 

KPD 6.2153 1.68050 2.7222 0.8728 38.7520 41.418 42.735 39.529 6.777 

 
Table 4. Goodness of fit result for data set 2. 

Distribution    MLE AIC CAIC BIC HQIC P-value 

EBP 20.6192 8.1199 0.9027 383.728 384.165 389.961 386.161 0.965 

PD 0.40654   516.459 516.529 518.536 517.270 1.273 

GPD 18.8328 -0.429  417.771 417.985 421.926 419.393 0.002 

APPD 29.5775 0.7695  465.322 465.536 469.477 466.944 1.029e-06 

KPD 7.94960 3.4110 1.0904 2.4508 384.571 385.312 392.881 387.815 2.2e-16 

 
Tables 3 and 4 show that the EBP distribution has lower AIC, CAIC, BIC, HQIC, and -log-likelihood values than alternative 
fitted distributions. Figures 3 and 4 show promising results for the proposed distribution. Figures 5 and 6. QQ-plot and PP-
plot are included. Although certain QQ-plot values deviate from the fitted line, this is typical of heavy-tailed distributions [37]. 
 

 
Figure 3: Plots for data set 1 
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Figure 4: Plots for data set 2 

 
Figure 5: Comparison between fitted distributions for dataset 1. 
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Figure 6: Comparison between fitted distributions for dataset 2 

 
Conclusion 
The new distribution, known as the EBP distribution, is introduced using alpha power Pareto distribution. The transformation 
adds skewness to a family of distribution functions. Various features of the distribution have been derived, including moment 
generation. Topics covered include function, order statistics, stress strength, mean residual life, mode, stochastic ordering, and 
entropy expressions. The maximum likelihood estimation approach was utilized to obtain parameter estimates for unknown 
parameters. The proposed distribution outperformed other Pareto distributions on two real datasets. 
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