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Abstract 
This study introduces a novel family of estimators for the finite population mean that demonstrate improved accuracy by 
utilizing dual auxiliary information in simple random sampling. The proposed estimators were evaluated by deriving their 
bias and Mean Square Error (MSE) expressions up to the first-order approximation. The analysis identifies the conditions 
under which these estimators outperform existing methods. Real-world data were used to compute the MSE and Percentage 
Relative Efficiency (PRE) of the proposed estimators. Comparative results show that, under specified conditions, the new 
estimator family achieve greater precision, reducing MSE and enhancing estimation accuracy. 
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Introduction  
In survey sampling, the effectiveness of an estimator for a population parameter is often enhanced by incorporating auxiliary 
information, especially when this information is closely related to the study variables. Auxiliary data play a crucial role in 
selecting and estimating population parameters, leading to more precise estimates of unknown population parameters. 
Generally, the efficiency of these estimates improves as the number of auxiliary variables increases. Well-known estimation 
methods such as ratio, product, and difference methods are commonly used in survey sampling. Ratio-type estimations are 
particularly effective when there is a strong positive correlation between the study and auxiliary variables. Conversely, 
product-type estimations are useful when there is a strong negative correlation. Various researchers have also explored 
regression-type and exponential-type estimators based on different transformations. The primary goal of this research is to 
develop a new estimator that can predict the population mean more accurately than existing estimators. 
When the population of auxiliary variables is known beforehand, using various regression-type, ratio-type, and product-type 
estimators is widely accepted in survey sampling literature for estimating the population mean of a study variable. Several 
researchers have put forth novel estimators, claiming enhanced efficiency compared to established alternatives. For instance, 
[1] developed and evaluated an efficient estimator for estimating the population mean.  
Survey sampling often utilizes supplementary data to enhance the accuracy of estimations. This approach was initially 
introduced by [2,3], who incorporated additional information into ratio and regression estimation techniques. In recent years, 
various researchers have proposed different types of ratio estimators by effectively transforming auxiliary variables. To delve 
deeper into these research developments, readers can refer to the works of [4,5,6,7,8,9,10] and the references cited in these 
studies. When the correlation is negative in product-type estimators, other researchers have proposed alternative estimators 
in various literature. The use of auxiliary information in the form of exponential ratio and product-type estimators was first 
introduced by [11]. Since then, numerous other studies have explored the use of auxiliary variables in this context, including 
works by [12,13,14,15,16,17,18,19 and 20].  
For future studies, refer to the additional literature on the suggested ratio-cum-product estimator for the population mean 
cited in [21,22,23,24,25,26.27, and 28]. Furthermore, building on foundational work, this study introduces an innovative 
family of exponential ratio-cum-product estimators designed to enhance the precision of parameter estimation in survey 
sampling. The objectives are dual: first, to develop these estimators for more accurate population mean estimation, and 
second, to compare their performance with existing methods, demonstrating their effectiveness under various sampling 
conditions. For futher studies see the [29,30,31, and 32]. 
Introducing new, precise families of population mean estimators that integrate both ratio and product estimators. These 
estimators also incorporate additional population parameters, such as correlation coefficients and coefficients of variation 
from auxiliary variables, to further enhance their precision. 
 
Methodology  

Consider a population denoted as (Ѱ = ѱ1, ѱ2, … . . ѱ𝑁) with a size of N unites to be obtained a random sample of n sample 
unites to be selected by using simple random sampling scheme (in simple random sampling each units of the population to 
be selected has an equal chance of being included in the sample) without replacement method. In simple random sampling 
let suppose we have the study variables sample information “y” to estimate the population mean. On the other hand, let us 
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consider two auxiliary variables, "𝑋1" and "𝑋2." To support this estimation, we have data available from these two additional 
variables. It is significant to highlight that information about the variables and the primary study variable is easily available.  

Let assumes that 𝜀0 =
1

𝑌̅
(𝑦̅ − 𝑌̅), 𝜀1 =

1

𝑋̅
(𝑥̅1 − 𝑋̅1) and 𝜀2 =

1

𝑍
(𝑥̅2 − 𝑋̅2) It fulfills the following ensuing characteristics. 

E(𝜀0) = E(𝜀1) = E(𝜀2) = 0, E(𝜀0
2) = λ𝐶𝑦

2, E(𝜀1
2) = λ𝐶𝑥̅1

2 , E(𝜀2
2 

) = λ𝐶𝑥̅2
2 , E(𝜀0 𝜀1)= λ𝐶𝑦𝑥̅1

, E(𝜀0 𝜀2) = λ𝐶𝑦𝑥̅2
, and E(𝜀1 𝜀2) = λ𝐶𝑥̅1𝑥̅2

, in addition, where  λ = 
𝑁−𝑛

𝑛𝑁
  

Furthermore, 𝑌̅ = 
1

𝑁
∑ 𝑦𝑖𝑁

𝑖=1 , 𝑋̅1 = 
1

𝑁
∑ 𝑥𝑖𝑁

𝑖=1 , 𝑎𝑛𝑑 𝑋̅2 = 
1

𝑁
∑ 𝑧𝑖𝑁

𝑖=1 , 𝑆𝑦
2 = 

1

𝑁
∑ (𝑦 − 𝑌̅)𝑁

𝑖=1
2, 𝑆𝑥

2 = 
1

𝑁
∑ (𝑥1 − 𝑋̅1)𝑁

𝑖=1
2, 𝑆𝑥

2 = 
1

𝑁
∑ (𝑥2 − 𝑋̅2)𝑁

𝑖=1
2, 𝐶𝑦𝑥1

=  𝜌𝑦𝑥1 𝐶𝑦𝐶𝑥1
, 𝐶𝑦𝑥2

=  𝜌𝑦𝑥2 𝐶𝑦𝐶𝑥2  , 𝐶𝑥1𝑥2
=  𝜌𝑥1𝑥2 𝐶𝑥1𝐶𝑥2   

The incorporation of supplemental data not only helps to lessen bias but also lowers estimation variability, which improves 
performance overall. Consequently, by utilizing the power of additional information throughout the estimation process, the 
dual auxiliary approach offers a reliable way to improve estimator efficiency. 
 
Literature-based estimators 
The following estimators are taken into consideration in this section. In the discipline of statistics, many estimators for 
determining the population mean have been created and recorded. To ensure the most appropriate and precise estimation of 
the population mean, researchers in the literature frequently select from this pool of estimators based on the unique features 
of their data and the underlying assumptions that support their research goals. 

When the data only includes the research variable, the conventional, traditional estimate of mean T1 = 𝑦̅ is employed. And 
their estimator’s variance is given in Eq. (1) 

𝑉𝑎𝑟(𝑇1) = 𝑌̅2λ𝐶𝑦
2          (1) 

As according to [2], the ratio estimator in the context of utilizing dual auxiliary variables, which is given in Eq. (2) as follows: 

𝑇2 =  𝑦̅ (
𝑋̅1

𝑥̅1
) (

𝑋̅2

𝑥̅2
)           (2) 

The Mean Squared Error (MSE) of the aforementioned ratio estimator is provided in Eq. (3) as follows. 

MSE (𝑇2) = λ𝑌̅2𝐶𝑦
2+𝐶𝑥̅1

2 + 𝐶𝑥̅2
2 − 2𝐶𝑦𝑥̅1

 −2𝐶𝑦𝑥̅2
+ 2𝐶𝑥̅1𝑥̅2

     (3) 

The chain ratio-product estimator introduced by [21] is presented in Equation (4) as follows. 

𝑇𝑝 =𝑦̅ (
𝑋̅1

𝑥̅1
) (

𝑥̅2

𝑋̅2
)          (4) 

The Mean Squared Error (MSE) of the above estimator, up to the first-order approximation, is demonstrated in Equation 
(5) as. 

MSE (𝑇𝑝) = λ𝑌̅2(𝐶𝑦
2 + 𝐶𝑥̅1

2 + 𝐶𝑥̅2
2 − 2𝐶𝑦𝑥̅1

 + 2𝐶𝑦𝑥̅2
− 2𝐶𝑥̅1𝑥̅2

)    (5) 

The regression estimator using dual auxiliary variables is described in Equation (6). This estimator leverages two auxiliary 
variables to refine the estimation of the target variable, incorporating their relationships into the regression model. 

𝑇𝑟𝑒𝑔 = 𝑦̅+𝑏1  (𝑋̅1 − 𝑥̅1) +𝑏2(𝑋̅2 − 𝑥̅2)       (6) 

Where 𝑏1 = 
𝑆𝑦

 𝑆𝑥̅1
2  and 𝑏2 = 

𝑆𝑦𝑥̅2

 𝑆𝑥̅2
2  are the sample regression coefficients which are associated with population regression 

coefficients 𝛽1= 
𝑆𝑦𝑥̅1

 𝑆𝑥̅1
2  and 𝛽2= 

𝑆𝑦𝑥̅2

 𝑆𝑥̅2
2  respectively.  

The MSE of the regression estimator in Equation (7) measures the average squared difference between the model's predicted 
values and the actual values, accounting for both variance and bias. 

MSE (𝑇𝑟𝑒𝑔) = λ𝑌̅2𝐶𝑦
2(1− 𝜌𝑦𝑥̅1

2 −  𝜌𝑦𝑥̅2
2 + 2𝜌𝑦𝑥̅1

𝜌𝑦𝑥̅2
𝜌𝑥̅1𝑥̅2

)     (7) 

The estimator suggested by the author in reference [31] is based on the use of two auxiliary variables and is expressed in 
exponential format, as shown in Eq (8). 

𝑇3 =  [𝛿3𝑦̅ + 𝛿4 (
𝑋̅1−𝑥̅1

𝑋̅1
) + 𝛿5 (

𝑋̅2−𝑥̅2

𝑋̅2
)] 𝑒𝑥𝑝 [(

𝑢(𝑋̅1−𝑥̅1)

𝑢(𝑋̅1+𝑥̅1)+2𝑣
)]       (8) 

To find the minimum Mean Squared Error (MSE) of the estimator, we need to determine the values of the constants 

𝛿3, 𝛿4 𝑎𝑛𝑑 𝛿5. These constants are adjusted to minimize the resulting MSE. Here, u and v are generalizing constants that 

depend on various parameters of the auxiliary variables. We define a term 𝜔 =
𝑢𝑋̅1

𝑢𝑋̅1+𝑣 
 The expression for the minimum MSE 

of the estimator is provided in Equation (9).  

MSE (𝑇3) = ≅ 𝑌̅2 λ𝐶𝑦
2(1 − 𝜌𝑦𝑥

2 )-𝐺1 − 𝐺2       (9) 

Where 𝐺1 =
𝑌̅2( 𝜔2𝐶𝑥̅1

2 −8𝐶𝑦𝑥̅1
2 −8𝐶𝑦

2𝐶𝑥̅1
2 )

2

64𝐶𝑥̅1
2 {1+𝐶𝑦

2(1−𝜌𝑥̅1
2 )}

 𝑎𝑛𝑑 𝐺2 =
𝑌̅2( 𝜔2𝐶𝑥̅1

2 −8)
2

(𝐶𝑥̅1
2 𝐶𝑦𝑥̅2−𝐶𝑦𝑥̅2

𝐶𝑥̅1𝑥̅2)
2

64𝐶𝑥̅1
2 𝐶𝑥̅2

2 (1−𝜌𝑥̅1
2 𝑥̅2){1+𝐶𝑦

2(1−𝜌𝑥̅1
2 )}{1+𝐶𝑦

2(1−𝜌𝑦𝑥̅1𝑥̅2
2 )}

. 

In reference [35], a product estimator is proposed, which is expressed in Eq (10). 

𝑇4 =  𝛿6𝑦̅ + 𝛿7𝑦̅ (
𝑥̅1

𝑋̅1
)

𝛼1
+ 𝛿8𝑦̅ (

𝑥̅2

𝑋̅2
)

𝛼2
       (10) 

In this context, 𝛿6, 𝛿7  and 𝛿8 are constants that need to be determined in a way that minimizes the Mean Squared Error 

(MSE). The constants 𝛼1 𝑎𝑛𝑑 𝛼2 can take on either positive or negative values. Specifically, 𝛿6= 
𝜑0

𝜑
, 𝛿7= 

𝜑1

𝜑
 and 𝛿8= 

𝜑2

𝜑
 The 

minimum MSE for the 𝑇5 estimator is given in Eq (11). 

MSE (𝑇4) ≅  𝑌̅2 [1 −
𝜑0+𝐴6𝜑1+𝐴7𝜑2

𝜑
]        (11) 
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Where 𝜑 = 𝐴0(𝐴1𝐴2 − 𝐴5
2)−𝐴3(𝐴2𝐴3 −  𝐴4  𝐴5) + 𝐴4(𝐴3𝐴5 − 𝐴1  𝐴4), 𝜑0 = (𝐴1𝐴2 − 𝐴5

2)−𝐴3(𝐴2𝐴6 − 𝐴5 𝐴7) +
 𝐴4(𝐴5𝐴6 −  𝐴1  𝐴7), 𝜑1 =   𝐴0(𝐴2𝐴6 − 𝐴5𝐴7) − (𝐴2𝐴3 −  𝐴4  𝐴5) + 𝐴4(𝐴3𝐴7 − 𝐴4  𝐴6) 𝑎𝑛𝑑 𝜑2 =   𝐴0(𝐴1𝐴7 −
𝐴5𝐴6)−𝐴3(𝐴3𝐴7 − 𝐴4  𝐴6) +  (𝐴3𝐴5 −  𝐴1  𝐴4). 

Furthermore, 𝐴0 = 1 +  λ𝐶𝑦
2, 𝐴1 = 1 + λ{𝐶𝑦

2 + 4𝛼1 𝐶𝑦𝑥̅1
+ 𝛼1 (2𝛼1 − 1)𝐶𝑥̅1

2 }, 𝐴2 = 1 + λ{𝐶𝑦
2 + 4𝛼2 𝐶𝑦𝑥̅2

+

𝛼2 (2𝛼2 − 1)𝐶𝑥̅2
2 }, 𝐴3 = 1 + λ {𝐶𝑦

2 + 2𝛼1 𝐶𝑦𝑥̅1
+

𝛼1(𝛼1−1)

2
𝐶𝑥̅1

2 } , 𝐴4 = 1 + λ {𝐶𝑦
2 + 2𝛼2 𝐶𝑦𝑥̅2

+
𝛼2(𝛼2−1)

2
𝐶𝑥̅2

2 }, 𝐴5 = 1 +

λ {𝐶𝑦
2 + 2𝛼1 𝐶𝑦𝑥̅1

+ 2𝛼2 𝐶𝑦𝑥̅2
+ 𝛼1 𝛼2 𝐶𝑥̅1𝑥̅2

𝛼1(𝛼1−1)

2
𝐶𝑥̅1

2 𝛼2(𝛼2−1)

2
𝐶𝑥̅2

2 }, 𝐴6 = 1 +
λ𝛼1

2
(𝛼1 + 2𝐶𝑦𝑥̅1

(𝐶𝑥̅1
2 )

−1
−

1) 𝐶𝑥̅1
2 𝑎𝑛𝑑 𝐴7 =  1 +

λ𝛼2

2
(𝛼2 + 2𝐶𝑦𝑥̅2

(𝐶𝑥̅2
2 )

−1
− 1) 𝐶𝑥̅2

2  

 
Proposed Estimator 
This section introduces two groups of proposed estimators for the finite population mean, employing two auxiliary variables 
within the context of simple random sampling. Additionally, it includes the derivation of formulas for both bias and mean 
squared error (MSE). The dual exponential introduces by Iftikhar et al [36] presented in the estimate shown below with two 
auxiliary variables. 
Inspired by these studies, a novel family of population mean estimators is proposed in the following Eq. (12) by adjusting 
[21]. 

𝑇𝑠 =  {𝑘𝑦̅ + 𝐿(𝑋̅1 − 𝑥̅1) + 𝑀(𝑋̅2 − 𝑥̅2)}𝑒𝑥𝑝 {
𝑎(𝑋̅1−𝑥̅1)

𝑎(𝑋̅1+𝑥̅1)2𝑏
} 𝑒𝑥𝑝 {

𝑎(𝑋̅2−𝑥̅2)

𝑎(𝑋̅2+𝑥̅2)2𝑏
}   (12) 

The above estimator can be used to create many estimators by changing the values of 𝑎, and b. In this case, the generalizing 
constants a and b can take on any appropriate value or any known parameter of the population, whereas the minimizing 
constants k, L and M whose values are found by minimizing the MSE. The above Eq. (12) can be expressed in terms of 
sampling errors as follows in order to get the estimator's MSE. 

𝑇𝑠 =  [{𝑘𝑌̅(1 + 𝑒0) + 𝐿(𝑋̅1 − 𝑋̅1(1 + 𝑒1)) + 𝑀(𝑋̅2 − 𝑋̅2(1 + 𝑒2))}𝑒𝑥𝑝 {
𝑎(𝑋̅1−𝑋̅1(1+𝑒0))

𝑎(𝑋̅1+𝑋̅1(1+𝑒0))2𝑏
} 𝑒𝑥𝑝 {

𝑎(𝑋̅2−𝑋̅2(1+𝑒2))

𝑎(𝑋̅2+𝑋̅2(1+𝑒0))2𝑏
}]  

     (13) 
In terms of sampling errors, the following equation is found by simplifying Eq. (13) and applying the Taylor series while 
ignoring the high order. 

𝑇𝑠 = [𝑘𝑦̅ + 𝑘𝑦̅𝑒0 − (𝐿𝑋̅1 +
𝑘𝑦̅𝜃1

2
) 𝑒1 − (𝑀𝑋̅2 +

𝑘𝑦̅𝜃2

2
) 𝑒2 −

𝑘𝑦̅𝜃1

2
𝑒0𝑒1 −

𝑘𝑦̅𝜃2

2
𝑒0𝑒2 + (

𝑀𝑋̅2𝜃1

2
+

𝐿𝑋̅1𝜃2

2
+

𝑘𝑦̅𝜃1𝜃2

4
) 𝑒1𝑒2 +

(
𝐿𝑋̅1𝜃2

2
+

3

8
𝑘𝑦̅𝜃1

2 ) 𝑒1
2 + (

𝑀𝑋̅2𝜃2
2

2
+

3

8
𝑘𝑦̅𝜃2

2) 𝑒2
2]   (14) 

Similarly, the above equation we can write in Eq. (15) 

[𝑇𝑠 − 𝑌̅] =  𝐸 [𝑘𝑌̅ − 𝑌̅ + 𝑘𝑌̅𝑒0 − (𝐿𝑋̅1 +
𝑘𝑌̅𝜃1

2
) 𝑒1 − (𝑀𝑋̅2 +

𝑘𝑌̅𝜃2

2
) 𝑒2 −

𝑘𝑌̅𝜃1

2
𝑒0𝑒1 −

𝑘𝑌̅𝜃2

2
𝑒0𝑒2

+ (
𝑀𝑋̅2𝜃1

2
+

𝐿𝑋̅1𝜃2

2
+

𝑘𝑌̅

4
𝜃1𝜃2) 𝑒1𝑒2 + (

𝐿𝑋̅1𝜃1

2
+

3

8
𝑘𝑌̅𝜃1

2) 𝑒1
2 + (

𝑀𝑋̅2𝜃1

2
+

3

8
𝑘𝑌̅𝜃2

2) 𝑒2
2] 

(15) 

The following bias expression, as in Eq. 16, is obtained by taking the expectation on Eq. (15) 𝐵𝑖𝑎𝑠(𝑇𝑠) =  𝑘𝑌̅ − 𝑌̅ −
𝑘𝑌̅𝜃1

2
λ𝐶𝑦𝑥1

−
𝑘𝑌̅𝜃2

2
λ𝐶𝑦𝑥2

+ (
𝑀𝑋̅2𝜃1

2
+

𝐿𝑋̅1𝜃2

2
+

𝑘𝑌̅

4
𝜃1𝜃2) λ𝐶𝑥1𝑥2

+ (
𝐿𝑋̅1𝜃1

2
+

3

8
𝑘𝑌̅𝜃1

2) λC𝑥1
2 + (

𝑀𝑋̅2𝜃1

2
+

3

8
𝑘𝑌̅𝜃2

2) λC𝑥2
2  

     (16) 
By taking square of Eq. (15) we obtain the below in Eq. (17) 

(𝑇𝑠 − 𝑌̅)2 = 𝑌̅ + 𝑘2𝑦̅2(1 + 𝑒0
2 + 𝜃1

2𝑒1
2 + 𝜃2

2𝑒2
2 − 2𝜃1𝑒0𝑒1 − 2𝜃2𝑒0𝑒2 + 𝜃1𝜃2𝑒1𝑒2) + 𝐿2𝑋̅1

2𝑒1
2 + 𝑀2𝑋̅2

2𝑒2
2 −

𝑘𝑦̅2 (2 − 𝜃1𝑒0𝑒1 − 𝜃2𝑒0𝑒2 +
1

2
𝜃1𝜃2𝑒1𝑒2 +

3

4
𝜃1

2𝑒1
2 +

3

4
𝜃2

2𝑒2
2) − 𝐿𝑋̅1𝑦̅(𝜃1𝑒1

2 + 𝜃2𝑒1𝑒2) − 𝑀𝑦̅𝑋̅2(𝜃2𝑒2
2 + 𝜃1𝑒1𝑒2) +

𝑘𝐿𝑋̅1𝑦̅(2𝜃1𝑒1
2 + 2𝜃2𝑒1𝑒2 − 2𝑒0𝑒1) + 𝑀𝑦̅𝑋̅2(2𝜃2𝑒2

2 + 2𝜃1𝑒1𝑒2 − 2𝑒0𝑒2) + 2𝐿𝑀𝑋̅1𝑋̅2𝑒1𝑒2   
     (17) 
Now by taking expectation of the equation (17) we have the MSE expression in Eq. (18) as  

𝑀𝑆𝐸(𝑇𝑠) = 𝑌̅2 + 𝑘2𝑌̅2(1 +  λ𝐶𝑦
2 + 𝜃1

2 λC𝑥1
2 + 𝜃2

2 λC𝑥2
2 − 2𝜃1λ𝐶𝑦𝑥1

− 2𝜃2λ𝐶𝑦𝑥2
+ 𝜃1𝜃2λ𝐶𝑥1𝑥2

) + 𝐿2𝑋̅1
2 λC𝑥1

2 +

𝑀2𝑋̅2
2 λC𝑥2

2 − 𝑘𝑌̅2 (2 − 𝜃1λ𝐶𝑦𝑥1
− 𝜃2λ𝐶𝑦𝑥2

+
1

2
𝜃1𝜃2λ𝐶𝑥1𝑥2

+
3

4
𝜃1

2 λC𝑥1
2 +

3

4
𝜃2

2 λC𝑥2
2 ) − 𝐿𝑋̅1𝑌̅(𝜃1λC𝑥1

2 + 𝜃2λ𝐶𝑥1𝑥2
) −

𝑀𝑌̅𝑋̅2(𝜃2 λC𝑥2
2 + 𝜃1λ𝐶𝑥1𝑥2

) + 2𝑘𝐿𝑋̅1𝑌̅(2𝜃1 λC𝑥1
2 + 2𝜃2λ𝐶𝑥1𝑥2

− 2λ𝐶𝑦𝑥1
) + 2𝑘𝑀𝑌̅𝑋̅2(2𝜃2 λC𝑥2

2 + 2𝜃1λ𝐶𝑥1𝑥2
−

2λ𝐶𝑦𝑥2
) + 2𝐿𝑀𝑋̅1𝑋̅2λ𝐶𝑥1𝑥2

          (18) 

The equation has been simplified, and its simplified form is presented in Equation (19) as follows. 

MSE(𝑇𝑠) = 𝑌̅2 + 𝑘2𝑌̅2𝐴 + 𝐿2𝑋̅1
2𝐵 + 𝑀2𝑋̅2

2𝐶 − 𝑘𝑌̅2𝐷 − 𝐿𝑋̅1𝑌̅𝐸 − 𝑀𝑌̅𝑋̅2𝐹 + 2𝑘𝐿𝑋̅1𝑌̅𝐺 + 2𝑘𝑀𝑌̅𝑋̅2𝐻 + 2𝐿𝑀𝑋̅1𝑋̅2𝐼 
        (19) 

Also in the above Eq (19) where 𝐴 = (1 +  λ𝐶𝑦
2 + 𝜃1

2 λC𝑥1
2 + 𝜃2

2 λC𝑥2
2 − 2𝜃1λ𝐶𝑦𝑥1

− 2𝜃2λ𝐶𝑦𝑥2
+ 𝜃1𝜃2λ𝐶𝑥1𝑥2

), 𝐵 =

 λC𝑥1
2 , 𝐶 =  λC𝑥2

2 ,𝐷 = (2 − 𝜃1λ𝐶𝑦𝑥1
− 𝜃2λ𝐶𝑦𝑥2

+
1

2
𝜃1𝜃2λ𝐶𝑥1𝑥2

+
3

4
𝜃1

2 λC𝑥1
2 +

3

4
𝜃2

2 λC𝑥2
2 ),𝐸 = (𝜃1λC𝑥1

2 + 𝜃2λ𝐶𝑥1𝑥2
),𝐹 =

(𝜃2 λC𝑥2
2 + 𝜃1λ𝐶𝑥1𝑥2

), 𝐺 = (2𝜃1 λC𝑥1
2 + 2𝜃2λ𝐶𝑥1𝑥2

− 2λ𝐶𝑦𝑥1
), 𝐻 = (2𝜃2 λC𝑥2

2 + 2𝜃1λ𝐶𝑥1𝑥2
− 2λ𝐶𝑦𝑥2

), and 𝐼 = λ𝐶𝑥1𝑥2
  

By taking derivative of the MSE epression given in Eq. (18) we obtain the following values for the constants k, L, M. 

𝑘 =
𝐵𝐶𝐷−𝐵𝐹𝐻−𝐶𝐸𝐺+𝐸𝐻𝐼+𝐹𝐺𝐼+𝐷

2𝐴𝐵𝐶+2𝐴−2𝐵𝐻2−2𝐶𝐺2+4𝐼𝐺𝐻
 , 𝐿 =

(𝐴𝐶𝐸−𝐼𝐴𝐹−𝐶𝐷𝐺+𝐷𝐻𝐼−𝐸𝐻2+𝐹𝐺𝐻)𝑌

2(𝐴𝐵𝐶+𝐴−𝐵𝐻2−𝐶𝐺2+2𝐼𝐺𝐻)𝑋
 and 
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 𝑀 =
𝑌(𝐴𝐵𝐹−𝐼𝐴𝐸−𝐵𝐷𝐻+𝐷𝐺𝐼+𝐸𝐺𝐻−𝐹𝐺2)

2𝑍(𝐴𝐵𝐶+𝐴−𝐵𝐻2−𝐶𝐺2+2𝐼𝐺𝐻)
  

With the above values the minimum MSE of the suggested estimator is given as: 

 𝑀𝑆𝐸(𝑇𝑠)𝑚𝑖𝑛 =  
𝜑1

2𝜑2
2        (20) 

Where 

 𝝋𝟏 = (𝑌2 ((−
1

2
𝐶𝐹2 + 2𝐶2) 𝐺4 + (((𝐸𝐹 − 81)𝐶 + 𝐼𝐹2)𝐻 + 𝐶𝐷) 𝐼𝐹 − 𝐶𝐸)) 𝐺3 + (((4𝐶 −

𝐹2

2
) 𝐵 − 2𝐼𝐸𝐹 −

𝐶𝐸2

2
−

8) 𝐻2 + 3) (𝐼𝐶𝐸 −
𝐵𝐶𝐹

3
+

2𝐹

3
) 𝐷𝐻 + ((𝐶𝐹2 − 4𝐶2)𝐵 +

𝐶2𝐸2

2
+ (−𝐼𝐸𝐹 − 4)𝐶 +

𝐹2

2
) 𝐴 +

𝐶𝐷2(𝐵𝐶+1)

2
𝐺2 + (((𝐸𝐹 −

81)𝐵 + 𝐼𝐸2)𝐻3 + 3𝐷 ((𝐼𝐹 −
𝐶𝐸

3
) 𝐵 +

2𝐸

3
)) ((((−𝐸𝐹 + 81)𝐶 − 𝐼𝐹2)𝐵 − 𝐼𝐶𝐸2 − 3𝐸𝐹 + 81) 𝐴 − 𝐼(𝐵𝐶 + 1)𝐷2) 𝐻 −

(𝐵𝐶 + 1)𝐴𝐷(𝐼𝐹 − 𝐶𝐹)𝐺 + (−𝐵𝐻2 + 𝐴(𝐵𝐶 + 1)) ((
𝐸2

2
− 2𝐵) 𝐻2 − (𝐼𝐸 − 𝐵𝐹)𝐷𝐻 + ((−

𝐹2

2
+ 2𝐶) 𝐵 + 𝐼𝐸𝐹 −

𝐶𝐸2

2
+

2) 𝐴 −
(𝐵𝐶+1)𝐷2

2
) and  𝝋𝟐 = (𝐴𝐵𝐶 + 𝐴 − 𝐵𝐻2 − 𝐶𝐺2 + 2𝐼𝐺𝐻).  

 
Theoretical comparison 
The effectiveness of the proposed estimator can be evaluated by comparing it to the existing estimators using the following 
conditions. 
Condition-1 
By comparing Eq (1) and Eq (20), MSE(Ts)<Var(T1) if 

[(λ𝐶𝑦
2 − 1) + 𝛿] > 0           (21) 

where in the above Eq (21) 𝛿 =
𝜑1

2𝜑2
2 

Condition-2 
By Comparing Eq (3) with Eq (20), MSE(Ts) < Var(T2), if  

{λ ( 𝐶𝑦
2 + 𝐶𝑥1

2 + 𝐶𝑥2
2 − 2𝐶𝑦𝑥1

 − 2𝐶𝑦𝑥2
+ 2𝐶𝑥1𝑥2

) − 1} + 𝛿 > 0   (22) 

Condition-3 
Comparing Eq (5) with Eq (20), MSE(Ts) <MSE(Tp), if  

{λ ( 𝐶𝑦
2 + 𝐶𝑥1

2 + 𝐶𝑥2
2 − 2𝐶𝑦𝑥1

+ 2𝐶𝑦𝑥2
− 2𝐶𝑥1𝑥2

) − 1} + 𝛿 > 0   (23) 

 Condition-4 
 by Comparing Eq (7) with Eq (20), MSE(Ts) < MSE(Treg), if  

λ𝐶𝑦
2(1− 𝜌𝑦𝑥1

2 −  𝜌𝑦𝑥2
2 +  2𝜌𝑦𝑥1

𝜌𝑦𝑥2
𝜌𝑥1𝑥2

) − 1 +  𝛿 > 0     (24) 

Condition-5 
 by Comparing Eq (9) with Eq (20), MSE(Ts) < MSE(T3), if  

𝑌̅2λ𝐶𝑦
2(1 − 𝜌𝑦𝑥

2 )-𝐺1 − 𝐺2-1+ 𝛿 > 0        (25) 

Condition-6  
by Comparing Eq (11) with Eq (20), MSE(Ts) < MSE(T4),  

𝑌̅2 [1 −
𝜑0+𝐴6𝜑1+𝐴7𝜑2

𝜑
]-1+ 𝛿 > 0        (26) 

 
Empirical study  
To assess the effectiveness of the proposed estimator on numerical data, three real-world datasets were utilized. Table 2 
displays the Mean Squared Errors (MSEs) for both the existing and proposed estimators across all three datasets listed in 
Table 1. In contrast, Table 3 illustrates the Percentage Relative Efficiencies (PREs) of the estimators compared to the 
traditional mean estimator. From both tables, it is evident that in all three datasets, the proposed estimators, specifically Ts 
(1,0) and Ts (1, Cx), outperform the others. Notably, their efficiency is enhanced through the applied transformation. By 
adjusting the parameters of the auxiliary variables, further improvements in efficiency can be achieved. Therefore, the 
proposed estimator families prove to be more efficient than the alternatives in estimating the population mean. 
 

Table-1: Data Summary 

S. No Data N n 𝑌̅2 𝑋̅2 𝑍̅2 𝐶𝑦 𝐶𝑥 𝐶𝑧 𝜌𝑦𝑥 𝜌𝑦𝑧 𝜌𝑥𝑧 

1 Source:[29] Wheat-
production)Y: in 1974. x: 
in 1971. z: in 1973. 

34 20 856.41 208.88 199.44 0.86 0.72 0.75 0.45 0.45 0.98 

2 [Source:[5] 
y=placebo group 
x:polio group 

34 15 4.92 2.59 2.91 1.012 1.23 1.05 0.73 0.64 0.68 
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z:paralytic polio group. 

3 [Source: [1]. y: cultivators  
x: Area of village, 
z: households in village. 

332 80 1093.1 181.57 143.33 0.763 0.768 0.762 0.97 0.86 0.84 

 
Table-2: Different MSE on Real Data 

Estimators Data-1 Data-2 Data-3 

T1 11168.1 0.9241645 6593.042 

T2 26291.25 2.009312 6755.832 

Tp 11858.49 1.282295 7113.921 

Treg 11077.64 0.6413499 4764.407 

T3 8794.968 0.3921003 304.5417 

T4 8093.594 0.4150048 547.6293 

TS (1,0) 8003.504 0.1091372 18.90024 

Ts (1, Cx) 7823.652 0.02793743 18.19442 

 
Table-3: Different PRE’s of the Real Datasets on classical estimators 

Estimators Data-1 Data-2 Data-3 

T1 100 100 100 

T2 42.4784 45.99407 97.59039 

Tp 94.17817 72.07115 92.67804 

Treg 100.8166 144.0968 138.3812 

T3 126.977 235.696 2164.906 

T4 126.9829 222.6876 1203.924 

TS (1,0) 139.54 846.7917 34883.37 

Ts (1, Cx) 153.33 3307.979 36236.62 

 
 
Results and Conclusion 
In this research, we propose two new families of exponential-type estimators designed specifically for use in simple random 
sampling, where two auxiliary variables are incorporated. These estimators are intended to improve the accuracy of 
population parameter estimates, particularly the population mean. To understand how well these estimators, perform. We 
conducted a detailed analysis using first-order approximation methods. This enabled us to derive important mathematical 
expressions related to the estimators' key characteristics, such as their bias (which measures systematic error) and Mean 
Squared Error (MSE), a common measure of an estimator’s overall accuracy. During our investigation, we identified specific 
conditions under which the new estimator families outperform other existing estimators, specifically in terms of lower MSE. 
Lower MSE values indicate that our proposed estimators provide more accurate and reliable estimates of the population 
mean compared to competing methods. 
To further validate the performance of these estimators, we applied them to real-world datasets.  In table-2 and Table-3 the 
MSE and PRE-are given for all the three datasets. It is obvious from these tables that the MSE values for the proposed TS 

(1,0) and Ts (1, Cx) estimators are smaller and PRE-values of the proposed estimators are higher than from all the other 
contenders to estimates the same parameter.  which give us minimum MSE as compared to the existing estimator Through 
this practical testing, we consistently found that the proposed estimators not only achieved lower MSE values but also 
delivered higher Percentage Relative Efficiency (PRE) values when compared with traditional estimators for the same 
population parameters. A higher PRE-indicates that the estimator is more efficient, meaning it requires fewer samples to 
achieve the same level of accuracy. The combination of lower MSE and higher PRE-consistently demonstrated that the new 
estimators are more reliable and efficient. This conclusion was supported by both the analysis of actual data and the 
outcomes of simulation studies, which provided controlled environments to test and compare the estimators. 
In summary, the research offers strong evidence that these proposed families of estimators are superior to existing methods. 
They are more efficient and accurate, making them highly useful in practical applications, particularly when working with 
simple random sampling and dual auxiliary variables. These findings have significant implications for improving the 
precision of population estimates in various fields of study. 
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