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Abstract 
In nearly all scientific disciplines, the statistical inference about the population relies on the quality of the obtained sampled 
data. For the statistical inference, the observed sample observations are often recorded as precise numerical values. From the 
centuries, continuous measurements are recorded as precise numbers, and statistics offer robust techniques and models for 
translating the sampled raw observations into valuable information. However, the modern metrology sciences recommend 
that getting precise measurements of continuous phenomena is not very realistic, and measurements inherently entail another 
form of uncertainty known as fuzziness. Therefore, for optimal inference, it is indispensable to integrate the potential 
uncertainties in the estimation through recording the continuous measurements by up-to-date fuzzy numbers. The objective 
of this study is to formulate Bayesian parameter estimators for the Normal distribution, aiming to address both uncertainties 
i.e. fuzziness and random variation. To completely employ all obtainable uncertainties, the proposed estimators are developed 
that are based on the informative fuzzy priors and fuzzy observations. 
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1 Introduction 
Statistics is often labeled as the study of numbers or the science of numerics, helping us understand and utilize real-world data 
by transforming it into meaningful results. It not only extracts information from real-world data but also allows us to generalize 
findings from smaller samples to larger populations. This is why statistics is recognized as a fundamental component of the 
decision sciences. With the progress in computer technology and the widespread availability of statistical software’s, it has 
become essential for conducting research and making knowledgeable decisions across various domains of life. Its role in 
analyzing data and providing valuable information has made it an essential tool for professionals in diverse fields, contributing 
significantly to advancements and improvements in decision-making processes (Pardo, 2020). 
Probability distribution functions represent the variability in data by illustrating the likelihood of different values. 
Understanding and predicting patterns within the data is facilitated by these functions. 
 
1.1 Normal Distribution 
The normal probability distribution developed by Gauss. C, F., is also known by a Gaussian distribution. The normal 
probability distribution is symmetric around its mean, meaning that the data is evenly distributed on both sides of the mean. 
The shape of the normal distribution is often referred to as a bell curve due to its characteristic bell-shaped curve. 
Normal distribution is one of the most useful distributions in statistics to model variation in almost every field of life like, 
economics, biology, engineering, life sciences, physics, and social sciences. Many natural phenomena and measurements tend 
to follow symmetry that follows a normal distribution. 
The central limit theorem is one of the groundbreaking generalizations, which states that for large number of observations 
the sampling distribution of the average or sum for large number of independent and identically distributed random variables 
can be approximated by normal distribution, irrespective of the original distribution(s) of the variable(s) (Bryc, 2012). 
However, one should note that in the real world not all data perfectly fits a normal distribution, and deviations from normality 
can have implications for statistical analyses. 
Nevertheless, as a result of technological progress, attaining a significant number of observations in the sample to draw 
conclusions about the population parameter(s) has become increasingly difficult and time-consuming. To improve the 
precision in estimating parameter(s) based on small samples, the concept of Bayesian probability was introduced in inferential 
statistics, referred to as Bayesian statistics. The Bayesian statistics integrates the available prior information about the parameter 
in the estimation. One of the main features of these approaches is the flexibility of updating the prior information if the data 
changes over time or if the sample size increases. These adaptable properties are playing a vital role in the acceptance of 
Bayesian statistics across almost every discipline (Heard, 2021). 
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1.2 Bayesian Statistics 
Let T is denoting a continuous random variable that consists of the sample space of a random experiment. The classical 

statistics is used to model the variation in the said random variables as 𝑇 ∼  𝑓(· |𝜃), where 𝜃  is observed fixed in the 

parametric space 𝛩 ⊆  (−∞, ∞). On the other hand, Bayesian statistics deal(s) the parameter(s) as random variable(s) in the 

parametric space 𝛩. Consequently, the parameter will have a known density just like other random variables symbolized by 
Ψ(θ) and termed as the Informative Prior. 

Let 𝑡 =  (𝑡1, 𝑡2, … , 𝑡𝑛) is denoting a precise sample, then the so-called likelihood function can be defined as: 

.                          (1) 

Assimilation of the likelihood function and prior density the obtained density is called the posterior density of 𝜃, denoted by 

𝛹(𝜃|𝑡), and can be obtained as: 

                 (2) 
 
or in more generalized non-normalized form as: 

    𝛹(𝜃|𝑡)  ∝  𝛹(𝜃)  ·  𝐿(𝜃 ; 𝑡)                         (3) 
                                                                                      

for details (Heard, 2021) 
 
2 Generalized Bayesian Estimation and Fuzzy 
Information 

Let assume that 𝑥 ∼  𝑁(µ, 𝜎2) 𝑖. 𝑖. 𝑑 having a density: 

     (4) 

The parameter µ has prior density of normal defined as ), 
with density: 

    (5) 

Where 𝜎0
2 is constant, then using equation (3) the posterior density can be obtained as: 

    (6) 
which is again a normal density with parameters 

 

 

 
then using equation (3), the posterior density is defined as: 

.             (9) 
which is again a Gamma distribution with the following parameters 

       (10) 
 

As advancements in measurement sciences have progressed, it has become evident that achieving precise measurements of 
continuous phenomena is unattainable, which is a leading reason for the conclusion that the recordings are based on 
approximated values (Barbato et al., 2013). Furthermore, this leads to the situation, that getting precise measurements of 
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continuous phenomena is not very realistic, and measurements inherently entail another form of uncertainty known as 
fuzziness. 
To overcome this challenge, Zadeh proposed a solution: the generalization of the classical set to what is known as a fuzzy set 
(Zadeh, 1965). 
 
2.1 Fuzzy Number 

Let v∗ is denoting a fuzzy number, determined by characterizing function 𝜓(·), with: 

1. 0 ≤  𝜓(𝑣) ≤  1      ∀𝑣 ∈ ℝ 

2. The δ-cut 𝐶𝛿(𝑣 ∗) ∶=  {𝑣 ∈  ℝ ∶  𝜓 (𝑣)  ≥  𝛿} for all 𝛿 ∈  (0, 1] is a finite 

union of the non-empty compact intervals [𝑣𝛿, 𝑘 , 𝑣𝛿, 𝑘], i.e. 

. 

3. The bounded support of 𝜓(·) is defined as, 𝑠𝑢𝑝𝑝[𝜓(·)] ∶=  [𝑣 ∈  ℝ ∶  𝜓 (𝑣)  >  0 ]  ⊆ [𝑣𝛿, 𝑘 , 𝑣𝛿, 𝑘] 
See (Viertl, 2011). 
In accordance with fuzzy set theory, realistic observations exhibit twofold variations: the predominant variation among the 
observations and fuzziness, a variation of the single observation often ignored. Extensive research has focused on modeling 
the variability among observations without considering the fuzziness. However, for inference that are more suitable, it is 
essential to address both types of variations. Upon understanding the prominence of fuzziness in measurements the parameter 
estimators for some essential distributions are recommended in, (Al-Noor, 2023), (Shah et al., 2022), (Vishwakarma et al., 
2018), (Shafiq et al., 2017), (Shapiro, 2013), (Venkatesh and Elango, 2013), (Viertl, 2009), (Wu, 2009), (Lee, 2006), (Nguyen 
and Wu, 2006), (Hung and Liu, 2004). 
In order to make a comprehensive inference, Bayesian statistics combine prior information regarding the unknown parameter 
with the variability among observations. Subsequently, realizing the importance of fuzziness/ uncertainty in single 
observations, (Viertl, 1987) proposed to integrate this fuzziness into Bayesian statistics, aiming to comprehend all the available 
information for optimal inference.  
 
2.2 Bayesian Inference and Fuzzy Information 

Let 𝑢1
∗ , 𝑢2

∗ , … , 𝑢𝑛
∗ , are denoting fuzzy observations having 𝐹 ∗ (𝑢), 𝐿 ∗ (𝛼, 𝑢), 

and 𝜋 ∗ (𝜃) fuzzy density function, fuzzy likelihood function, and fuzzy a-priori density function respectively. 

Let 𝐹𝛿(𝑢), 𝐿𝛿(𝜃 , 𝑢), 𝜋𝛿(𝜃)  are denoting the lower ends of the corresponding family of intervals, while 

𝐹𝛿(𝑢), 𝐿𝛿(𝜃 , 𝑢), 𝜋𝛿(𝜃) are denoting the upper ends of the corresponding family of intervals. 
Their corresponding lower and upper δ-level curves are denoted as 

 

 
Based on the fuzzy likelihood and fuzzy prior density the generalized fuzzy Bayes theorem is written as 

             (14) 
having lower and upper δ-level curves πδ(θ|u) and πδ(θ|u) respectively. 
Where 

 
and 

           (16) 
for detail see (Viertl, 2011) 
Using the fuzzy Bayesian approach based on fuzzy information, there have been efforts done to address the issue of fuzziness 
in available information like, 
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(Viertl and Hule, 1991), (Fru¨hwirth-Schnatter, 1993), (Wu, 2004), (Viertl and Hareter, 2004), (Huang et al., 2006), (Go¨rkemli 
and Ulusoy, 2010), (Viertl and Sunanta, 2013), (Pak et al., 2013), (Shafiq, 2017). 
Therefore, this effort has been made to generalize the parameters estimators for the most popular distribution used in almost 
every field of science i.e. Normal distribution. 
These approaches will integrate fuzziness of the observations as well as fuzziness of the a-priori density to obtain the more 
realistic inference. 
In this section generalized Bayesian estimators based on informative and non-informative priors are suggested to integrate 
both the uncertainties present in lifetime observations. 
From the literature is clear that lifetime observations are no more precise number but fuzzy. For the priors both the situations 
are considered, i.e., precise prior information and fuzzy prior information. 
From the fuzzy posterior density, the generalized fuzzy parameter estimator can be defined as: 

 
Where 

 
and 

 
The sample comprises 8 fuzzy observations, each observation is identified by a characterizing function. These characterizing 
functions enable the clear depiction of these fuzzy observations, as presented in given below Figure 1. 

 
Figure 1: Sample of fuzzy observations 

 

 
Given below figure 2 is characterizing function of the fuzzy Bayesian estimator of the mean estimator µ∗ based on the lower 
end upper ends of the generating families of intervals obtained from equation (18) and (19). 
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Figure 2: Characterizing function of the Bayesian estimate of mean µ∗ 

 
 

Figure 2 depicts the characterizing function indicates that the parameter µ ranges from 9.68 to 28.1 with a membership degree 
of 1. Likewise, it ranges from 5.64 to 48.03 with a membership degree of 0.5. Similarly, the lower and upper bounds can be 
determined for any membership degree within the 
interval [0, 1]. 
The spread of the characterizing function indicates a notably higher degree of fuzziness in the estimator as compared to the 
data. This implies that even minor degrees of fuzziness lead to increased uncertainty in the estimates. Hence, it authenticates 
a convincing rationale for considering the fuzziness of the observations for statistical inference. 
For the Bayesian estimator of variance of the normal distribution for the fuzzy observation, using equation (10) we obtain as: 

(20) 
where 

 
and 

 
defining 𝛼 and 𝛽 MLEs of the gamma distribution, these were further simplified in the following equations: 

 
And 

 
Using the above equations lower 𝜎𝛿

2
 and upper 𝜎𝛿

2
 ends of the generating family of intervals of Bayesian fuzzy estimator 𝜎2∗are 

obtained as: 

 
And 
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Figure 3: Characterizing function of the Bayesian estimate of variance σ2∗ 

 
 

Similarly, Figure 3 illustrates the characterizing function, showing that the parameter 𝜎2∗ spans from 4.86 to 11.55 with a full 
membership degree of 1, and from 3.36 to 19.06 with a membership degree of 0.5. Additionally, the lower and upper bounds 
can be established for any membership degree within the range of [0, 1]. 
The extent of fuzziness displayed by the characterizing function signifies a significantly greater level of uncertainty in the 
estimator compared to the data. This suggests that even slight degrees of fuzziness result in heightened uncertainty in the 
estimates. Consequently, it provides a compelling justification for taking into account the fuzziness of observations in 
statistical inference 
 
3 Conclusion 
The prime objective of the data analysis is to obtain more realistic inferences about the population parameter(s) from the 
sample observations. Statistics provides sophisticated techniques for making statistical decisions about the population based 
on sample data. In most situations, the variable(s) under study are of a continuous nature, but the observations are measured 
in the form of precise numbers. But according to advanced measurement science, continuous variables can’t be measured 
precisely, and by doing so, we may draw misleading inference. Therefore, for the best possible inference, it is noteworthy to 
handle all possible uncertainties. Hence, the continuous variables should be measured and recorded by up-to-date fuzzy 
numbers. 
Since the Normal distribution is among one of the most used distributions in real life applications in almost every field of life. 
In the same way, precise measurements are not possible for any kind of continuous phenomenon. Therefore, an effort is made 
to generalize the Bayesian estimators for the parameter of the Normal distribution to cover both uncertainties. The Bayesian 
inference based on the suggested estimators are much better than the classical one, because these estimators utilize all the 
available information in the form of variation and fuzziness. In addition to these, the obtained estimators have more fuzziness 
as compared to the data. Therefore, it strongly supports the claim to include fuzziness of the single observations in statistical 
inference. 
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