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Abstract 
Since December 2019, every aspect of daily life has been profoundly impacted by the COVID-19 pandemic. The coronavirus 
spread over 200 countries worldwide and killed more than 5 million individuals. Modeling the death rate due to COVID-19 
has become vital in guiding health authorities in implementing effective policies and decision-making. This research 
investigates the New Flexible Exponential Type Family (FETF) of distributions and explores a specific distribution within 
this family, the Exponential Type Weibull distribution (ETW) that can be used to model the mortality rate COVID-19 patients. 
The research thoroughly explores ETW characteristics, such as order statistics, moments, survival function, hazard function, 
mean residual life function, and quantile function. The widely accepted likelihood approach is employed to estimate the 
unknown parameters in the suggested model. The recommended model is carefully tested against real-world non-monotonic 
COVID-19 data and simulated datasets to determine its usefulness.  The results exhibit the superior performance of the 
recommended model when compared to several prominent alternatives. 
 
Keywords: Moment generating function, Quantile function, Mode, Order statistics, Shannon entropy, Weibull distribution, 
COVID-19.   
 
1. Introduction 
The Weibull (Wb) distribution is a very well-liked lifetime distribution due to its pliability in fitting failure times. Lifetime data 
are found in different domains such as survival analysis, reliability engineering, medicine, economics, business, and many 
others. However, the Wb distribution has limitations in that it models only monotonic hazard rates. Hence, it’s unsuitable to 
model the non-monotonic hazard rate like bathtub shape. To overcome this constraint, numerous researchers have adapted 
the Weibull distribution to account for hazard rates that are not strictly monotonic. Many scholars have awarded significant 
revivals of these modifications, for instance, Sarhan and Zaindin (2009) studied the “Modified Weibull distribution” and 
discussed their properties. Pal and Tienuwan (2014) introduced a beta-transmuted Weibull distribution and studied their 
numerous mathematical properties. Abid and Abdulrazak (2017) worked on a truncated Frechet-G family of distribution. 
Ahamad & Ghazal (2020) discussed the exponential additive Weibull distribution with five parameters. Oluyede et al. (2021) 
introduced a novel family termed the Exponentiated Half Logistic-Power Generalized-G distribution and analyzed four cases 
for the proposed distribution. Recently, Ghazal (2023) introduced an innovative distribution referring to NMW3 distribution, 
which is a creative addition to the three-parameter-modified Weibull distribution. Especially, the NMW3 distribution exhibits 
hazard rate shapes with either an ascending, descending or bathtub-shaped structure. The author carried out a detailed 
empirical examination, involving a comparison with existing lifetime distributions, to evaluate the effectiveness and 
applicability of this recently proposed model. Jiang et al. (2023) carried out a new version of the Wb distribution known as 
the “Improved Modified Weibull Distribution” (IMW). This distribution exhibits noticeable flexibility in its capacity to 
efficiently model the three distinctive stages characterizing the modified bathtub-shaped hazard function. Shama et al. (2023) 
investigated a modified duplicate of the Wb distribution, known as the "Modified Generalised Weibull Distribution." This 
update incorporates four parameters and demonstrates the ability to appropriately express a hazard rate function represented 
by a bathtub pattern. Khan et al. (2023) proposed a new statistical model called the "New Beta Power Very Flexible Weibull 
Distribution." This model stands out for its capacity to properly accommodate and describe five distinct failure rate patterns. 
Alomair et al. (2023) enhanced the probability models using the trigonometry technique. The new variant of the Wb 
distribution is known as a type-I cosine exponentiated Weibull (TICE-Weibull) distribution. By using two actual data sets, the 
model's flexibility is assessed. Tashkandy and Emam (2023) introduced the Exponential Weibull distribution (E-WD), which 
represents a novel extension of the three-parameter Weibull model. This proposed probability model provides a flexible 
structure that may accommodate a variety of data distributions, including positively skewed, negatively skewed, decreasing, 
curving, and symmetric shapes. Alotaibi et al. (2023) suggest a modified Weibull distribution by integrating an additional shape 
parameter via the modified alpha power transformation technique. Frequently, this model is denoted as the "Weibull 
distribution with a modified alpha-power transformation". This unique distribution's beauty and significance arise from its 
capability to capture both monotonic and non-monotonic failure rate curves effectively. El-Monsef et al. (2022) investigated 
a novel statistical model termed Poisson Modified Weibull Distribution (PMW). This probability model was initiated to achieve 
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a hazard rate function with a variety of patterns, particularly the bathtub shape. In the field of reliability analysis, this unique 
form is quite useful. Aljarrah et al. (2024) worked on the generalization of lifetime distribution and introduced a novel class 
of distributions termed as the generalized symmetric T-Y {Y} class.  To construct this class of distribution, authors used the 
quantile function of the generalized Weibull distribution. They also introduced a sub-family of distributions. First is the 
generalized symmetric t-distribution and the second is the generalized Symmetric Exponential-R family of distributions. 
Abdelall et al. (2024) proposed a new generator called the “extended odd inverse Weibull-generator”, which can be used to 
generate a new continuous probability distribution. Using this generator, a special case ware introduced by incorporating the 
Weibull model as a baseline distribution is called extended odd inverse Weibull-G family which is extended to five parameters. 
To analyze the behavior of parameters, a Bayesian estimation method was used and compared with the ordinary MLE method. 
Results show that the Bayesian approach performs well against MLE. Rahman (2024) introduced a new family of distribution 
called Triangle-G (TR-G) family of distribution. Also, some properties of the TR-G family have been derived from this 
research. Using the Inverse Weibull distribution of parameters two and three, the special members of the TR-G family of 
distributions are derived called TR-Inverse Weibull (TR-IW) distributions. Both distributions of parameters two and three 
show flexibility against some well-known distributions. AbaOud & Almuqrin (2024) modified the three parameters generalized 
inverse Weibull (GI-Weibull) distribution and developed a new weighted version of the GI-Weibull distribution may called 
weighted generalized inverse Weibull (WGI-Weibull) distribution. The WGI-Weibull model is considered as an alternative to 
the GI-Weibull which is best fitted compared to other existing distributions as it’s established with medical data. Alzahrani 
(2024) discussed and modified the Weibull distribution by incorporating extra parameters, resulting in the development of a 
new distribution called the “Exponential-Weibull Weibull (EWW) distribution." This five-parameter model has the capability 
to deal with non-monotonic failure rate data. The parameters of the EWW model were estimated both using Bayesian and 
maximum likelihood procedures. The EWW model is compared with some well-known probability models using the dropout 
times of the students, which indicates that the proposed model is outperforming. Widyaningsih & Ivana (2024) present a 
continuous lifetime probability distribution named the Weibull-Poisson (WP) distribution. This hybrid model is formed by 
combining the Weibull and zero-truncated Poisson distributions. The hazard function, such as monotone decreasing, 
monotone increasing, or upside-down bathtub, can impact the flexibility of the WP distribution. To demonstrate, the Weibull-
Poisson distribution is used for guinea pig survival data following infection with the Turblece virus Bacilli. Lakibul (2023) 
introduced the idz distribution, which is a mixture of three lifetime distributions, i.e., the Weibull, Exponential and Ailamujia 
distributions. The idz distribution failure rate function produces three types of failure rates i.e., non-monotonic constant, non-
monotonic declining and right-tailed unimodal. The suggested distribution was applied to breast cancer data and compared to 
some current lifetime distributions. Results show that the Idz distribution provides superior estimates for the dataset. 
Eghwerido & Agu (2023) developed a novel family of continuous distributions called the Alpha Power Muth or Teissier-G 
(APTG) family of distributions. The authors also got the reliability measures and the combined progressive type II censoring 
method. To evaluate the numerical application of the proposed model, they used both simulated and real data. Sundaram & 
Jayakodi (2023) proposed an alternative distribution to Weibull and Exponential based on q-Exponential-G family of 
distributions called the q-Exponential-Weibull distribution. 
In this study, the Wb distribution is modified, resulting in the emergence of a new class of probability distributions known as 
the FETF of Distributions (FETF). The special case of the FETF called Exponential Type Weibull distribution (ETW) is also 
discussed.  
 
2. FETF of Distributions 
We present a novel class of probability distributions in this section called Flexible Exponential Type Family (FETF). Take 
into consideration X, a continuous random variable. This newly defined FETF family’s cumulative distribution function (or 
CDF) is written as follows:  
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In this context, 𝜇represents the scale parameter, and 𝐹(𝑥) denotes CDF of the baseline model. 
 
3. ETW Distribution 
In this section, we have discussed the special case of FETF. We made some modifications to the traditional Wb distribution 
CDF and attained the new CDF of the ETW distribution in the form of (3). The Wb distribution CDF is formulated in the 
following manner. 

(𝐹𝑤(𝑥))
𝑥>0

= 1 − 𝑒−𝜇𝑥𝜋
               (2) 

Where, 𝜇and 𝜋 represent the scale and shape parameter, respectively. 

𝐹𝐸𝑇𝑊(𝑥;  𝜇, 𝜋) = 𝑒
𝜇−

𝜇

1−𝑒−𝜇𝑥𝜋 ;  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥, 𝜇, 𝜋 > 0   (3) 
With relation to equation (3), the probability density function (PDF) can be displayed as follows: 

𝑓𝐸𝑇𝑊(𝑥;  𝜇, 𝜋) =
𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
−1)2 , for 𝑥, 𝜇, 𝜋 > 0   (4) 

Figure 1 illustrates the ETW PDF and the CDF graphically for a range of parameter values.  
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Fig-1: PDF and CDF of the ETW 

 
4. Properties of the ETW Distribution 
This section examined a number of statistical aspects of the ETW. These properties covered the survival function, hazard 
function, rth moments, quantile function, and Shannon entropy.  
 
4.1 The Survival and Hazard Rate Function 
The survival function of the suggested distribution is defined as follows: if X is a random variable that follows ETW.  

𝑅(𝑥) = 1 − 𝐹(𝑥), putting equation (3), we have 

𝑅(𝑥;  𝜇, 𝛾) = 1 − 𝑒
𝜇

𝑒𝜇𝑥𝛾
−1 (5) 

Using equations (4) and (5), we got hazard function H(x) in the form of (6) as H(x) is the ratio of PDF to Survival function.   

Η(𝑥; 𝜇, 𝜋) =
𝜇2𝜋𝑥𝜋−1𝑒𝜇𝑥𝜋

(𝑒

𝜇

𝑒𝜇𝑥𝜋
−1−1)(𝑒𝜇𝑥𝜋

−1)2

   (6) 

 
Figure 2 shows how the hazard rate function varies for various parameter values. 

 
Fig-2: Hazard Function of ETW 

 
4.2 Mean Residual Life (MRL) Function 

The MRL of the ETW distribution with parameter 𝜇, 𝛾is defined as 

𝑀𝑅(𝑡) =
∫ 𝑥𝑓(𝑥)𝑑𝑥

∞
𝑡

𝑅(𝑥)−𝑡
  (7) 

Substituting eq(4) and eq(5) in the above expression, we have  

𝑀𝑅(𝑡) =

∫ 𝑥
𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇
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−1

(𝑒𝜇𝑥𝜋
−1)

2 𝑑𝑥
∞

𝑡

1−𝑒

𝜇

𝑒𝜇𝑥𝜋
−1−𝑡

  (8) 

by solving the numerator of equation (8), we have  
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It was assuming that 𝜋(𝑘 − 2𝜋) ≠ 0, 𝜋(𝑘 − 𝜋) ≠ 0 
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After simplification and substituting the above expression in (8), we obtained the MRL in the form  

𝑀𝑅(𝑡) =

− (
1
𝜇

)

1
𝜋

(− ∑
(−1)𝑘

𝑘
∞
𝑘=1 )

1
𝜋

𝜇
𝑘
𝜋

 

) (−
𝑘 − 𝜋

𝜋
, 𝑧)

1 − 𝑡 − 𝑒𝑧
 

 
4.3 The rth Moments 
Consider a random variable X following the ETW, the rth moments about the origin are illustrated as follows. 

𝜇𝑟 = ∫ 𝑥𝑟𝑓(𝑥)

∞

0

𝑑𝑥 

Putting equation (4), we get 

𝜇𝑟 = ∫ 𝑥𝑟∞

0

𝜇2𝜋𝑥𝜋−1𝑒
𝜇𝑥𝜋−

𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
−1)2 𝑑𝑥  (9) 

Let 𝑧 =
𝜇

𝑒𝜇𝑥𝜋
−1

  and−𝑑𝑧 =
𝜇2𝜋𝑥𝜋−1𝑒𝜇𝑥𝜋

(𝑒𝜇𝑥𝜋
−1)2 , substituting these two expressions in (9) which take the form  

= ∫ −𝑥𝑟𝑒−𝑧𝑑𝑧
∞

0
    (10) 

 

Where𝑥 = [
log(

𝜇

𝑧
+1)

𝜇
]

1

𝜋

, then equation (10) becomes.  

= (
1

𝜇
)

1
𝜋

∫ [log (
𝜇

2
+ 1)]

1
𝜋

𝑒−𝑧𝑑𝑧

∞

0

 

Finally, we obtained the result as  

𝜇𝑟 = − (− ∑
(−1)𝑘

𝜇𝑘

∞

𝑘=1

)

1
𝜋

𝜇
𝑘
𝜋

 

) (−
𝑘 − 𝜋

𝜋
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It was assuming that 𝜋(𝑘 − 2𝜋) ≠ 0, 𝜋(𝑘 − 𝜋) ≠ 0 
 
4.4 Order Statistics 

Let 𝑋1, 𝑋2, 𝑋3, … . 𝑋𝑛be ordered random variables from ETW, then the PDF of the 𝑖𝑡ℎ order statistic is given as 

𝑓𝑥(𝑖)(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖𝑓(𝑥)  (11) 

Using equation (3) and (4), equation (11) takes the form. 

𝑓𝑥(𝑖)(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
(𝑒

−
𝑎

𝑒𝜇𝑥𝜋
−1)

𝑖−1

(1 − 𝑒
−

𝜇

𝑒𝜇𝑥𝜋
−1)

𝑛−𝑖 𝜇2𝜋𝑥𝜋−1𝑒
𝜇𝑥𝜋−

𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
− 1)2

 

The smallest order statistic of the ETW distribution is given as 

𝑓𝑥(1)(𝑥) =
𝑛𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
− 1)2

(1 − 𝑒
−

𝜇

𝑒𝜇𝑥𝜋
−1)

𝑛−1

 

And the largest order statistic of the ETW distribution is given as 

𝑓𝑥(𝑛)(𝑥) =
𝑛𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝛾
−1

(𝑒𝜇𝑥𝜋
− 1)2

(𝑒
−

𝜇

𝑒𝜇𝑥𝜋
−1)

𝑛−1

 

 
4.5 Quantile Function and Median 

With 𝑢(0,1) representing a uniform random number and 𝐹𝐸𝑇𝑊(𝑥) representing the CDF of the suggested distribution in (3), 

which can be solved for the random variable X, the quantile function is represented as 𝐹𝐸𝑇𝑊(𝑥) = 𝑢. It is defined as the 
quantile function. 

𝑒
𝜇(1−

1

1−𝑒−𝜇𝑥𝜋)
= 𝑢   (12) 

Taking log on both side of the above expression, we get 

𝜇 (1 −
1

1 − 𝑒−𝜇𝑥𝜋) = log(𝑢) 

After solving the above expression for X, we get the quantile function as.  

𝑥 = [
log(1−

𝜇

log(𝑢)
)

𝜇
]

1

𝜋

 (13) 

To get median put 𝑢 =
1

2
in equation (13), we have.  
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𝑀𝑒𝑑𝑖𝑎𝑛 (𝑥) = [
log (1 +

𝜇
log(2)

)

𝜇
]

1
𝜋

 

4.6 The Skewness and Kurtosis 
The Quantiles approach is utilized to evaluate the distribution's shape, including skewness and kurtosis. Faton and Ibrahim 
derived the Bowley’s skewness formula [9] and Kurtosis formula by Moors [10] are given as  

𝑆𝑘 =
𝑄𝑢𝑛 (

3
4

) + 𝑄𝑢𝑛 (
1
4

) − 2𝑄𝑢𝑛 (
1
2

)

𝑄𝑢𝑛 (
3
4

) − 𝑄𝑢𝑛 (
1
4

)
 

𝐾𝑟 =
𝑄𝑢𝑛 (

7
8

) + 𝑄𝑢𝑛 (
3
8

) − 𝑄𝑢𝑛 (
5
8

) − 𝑄𝑢𝑛 (
1
3

)

𝑄𝑢𝑛 (
6
8

) − 𝑄𝑢𝑛 (
2
8

)
 

Table 1 presents the skewness and kurtosis values of the ETW distribution across various parameter settings. 
 

Table-1: Skewness and Kurtosis 

Parameters Skewness Kurtosis 

𝜇 = 0.2, 𝜋 = 0.5 0.645918 2.834901 

𝜇 = 0.3, 𝜋 = 0.7 0.483295 1.905418 

𝜇 = 1.2, 𝜋 = 1.8 0.148872 1.248325 

𝜇 = 2.2, 𝜋 = 3.1 0.071233 1.217026 

𝜇 = 3.8, 𝜋 = 4.2 0.044875 1.219259 

𝜇 = 4.9, 𝜋 = 5.3 0.034914 1.221272 

 
4.7 Mode 
We can get the mode of ETW by taking derivative of equation (4) and equate them zero, then solve for X 

/( ) 0f x =  

𝑑

𝑑𝑥
(

𝜇2𝜋𝑥𝜋−1𝑒
𝜇𝑥𝜋−

𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
− 1)2

) = 0 

−
𝜇𝜋𝑥𝜋−2

[(𝜇𝜋𝑥𝜋 − 𝜋 + 1)𝑒2𝜇𝑥𝜋
+ (−𝜇2𝜋𝑥𝜋 + 2𝜋 − 2)𝑒𝜇𝑥𝜋

− 𝜇𝜋𝑥𝜋 − 𝜋 + 1]𝑒
𝜇𝑥𝜋−

𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
− 1)4

= 0 

(𝜇𝜋𝑥𝜋 − 𝜋 + 1)𝑒2𝜇𝑥𝜋
+ (−𝜇2𝜋𝑥𝜋 + 2𝜋 − 2)𝑒𝜇𝑥𝜋

− 𝜇𝜋𝑥𝜋 − 𝜋 + 1 = 0  (14) 
In general, there is not an explicit solution for (14). However, by using iterative procedure one can get a numerical solution.  
 
5. Maximum Likelihood Estimation (MLE) 
The conventional method of estimating, known as maximum likelihood estimates, was used to produce the estimates for the 
unknown parameters in the probability model. Let the independent sample of size n represented ETW distribution are 
selected. In this way, the likelihood function L is expressed as. 

𝐿 = ∏ 𝑓(𝑥𝑖; 𝜇, 𝜋)

𝑛

𝑖=1

 

Putting (4) into previous expression gives us 

𝐿 = ∏
𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
− 1)2

𝑛

𝑖=1

 

Log of the above expression yield the log likelihood function as 

ℓ = 2𝑛log𝜇 + 𝑛log𝜋 + (𝜋 − 1)log ∑ 𝑥𝑖 + 𝜇 ∑ 𝑥𝑖
𝜋 −

𝜇

𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 1
− 2log ∑(𝑒𝜇𝑥𝑖

𝜋
− 1)

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

The unknown parameters can be determined by taking partial derivatives of ℓwith respect to the parameters  𝜇and, 𝜋and 
setting the results to zero.  
 

𝜕ℓ

𝜕𝜇
=

2𝑛

𝜇
+

𝜇 ∑ 𝑥𝑖
𝜋𝑒𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1𝑛

𝑖=1

(𝑒
𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 −1)

2 −
1

𝑒
𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 −1

+ ∑ 𝑥𝑖
𝜋 + ∑

2𝑥𝑖
𝜋𝑒𝜇𝑥𝑖

𝜋

𝑒
𝜇𝑥𝑖

𝜋
−1

𝑛
𝑖=1

𝑛
𝑖=1 = 0    (15) 
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𝜕ℓ

𝜕𝜋
=

𝑛

𝜋
+ log ∑ 𝑥𝑖 +

𝜇2 ∑ 𝑥𝑖
𝜋log ∑ 𝑥𝑖𝑒𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1𝑛

𝑖=1
𝑛
𝑖=1

(𝑒
𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 −1)

2 + 𝜇 ∑ 𝑥𝑖
𝜋log ∑ 𝑥𝑖 − ∑

2𝜇𝑥𝑖
𝜋log𝑥𝑖𝑒𝜇𝑥𝑖

𝜋

𝑒
𝜇𝑥𝑖

𝜋
−1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 = 0 (16) 

 
See, equation (15) and (16) are not in closed form. Hence, the exact parameters' values are difficult to estimate. Alternatively, 
to obtain the MLEs, numerical techniques like the Newton-Raphson and Bisection methods can also be used. 
 
5.1 Asymptotic Confidence Bounds 
As previously stated, the unknown parameters do not possess closed-form solutions, making it impossible to derive the correct 
distribution for the MLEs. However, utilizing asymptotic distribution of MLEs, we have established asymptotic confidence 
bounds for these unknown values. 
 
The second partial derivates of the equation (15) and (16) are respectively given as 

𝐼11 =
𝜕ℓ

𝜕𝜇2
= − [

∑ 𝑥𝑖
𝜋𝑒𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1𝑛

𝑖=1 {(2𝑛 ∑ 𝑥𝑖
𝜋 − 1𝑛

𝑖=1 )𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 + 2𝑛 ∑ 𝑥𝑖
𝜋 + 1𝑛

𝑖=1 }

(𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 1)
3 ] + ∑

2𝑥𝑖
2𝜋𝑒𝜇𝑥𝑖

𝛾

(𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 1)
2

𝑛

𝑖=1

 

𝐼22 =
𝜕ℓ

𝜕𝜋2

=
𝜇 ∑ 𝑥𝑖

𝜋log ∑ 𝑥𝑖
2[𝑒𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 (𝑒2𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 − (𝜇(𝜇 ∑ 𝑥𝑖

𝜋 − 1𝑛
𝑖=1 ) + 3)𝑒𝜇 ∑ 𝑥𝑖

𝜋𝑛
𝑖=1 − 𝜇(𝜇 ∑ 𝑥𝑖

𝜋 + 1𝑛
𝑖=1 ) + 3) − 1]𝑛

𝑖=1
𝑛
𝑖=1

(𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 1)
3

− ∑
2𝜇𝑥𝑖

𝜋log𝑥𝑖
2𝑒𝜇𝑥𝑖

𝜋
(𝑒𝜇𝑥𝑖

𝜋
− 𝜇𝑥𝑖

𝜋 − 1)

(𝑒𝜇𝑥𝑖
𝜋

− 1)
2

𝑛

𝑖=1

 

𝐼12 =
𝜕ℓ

𝜕𝜇𝜋

=
∑ 𝑥𝑖

𝜋log ∑ 𝑥𝑖[𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 (𝑒2𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − (𝜇(𝜇 ∑ 𝑥𝑖
𝜋 − 2𝑛

𝑖=1 ) + 3)𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 𝜇(𝜇 ∑ 𝑥𝑖
𝜋 + 2𝑛

𝑖=1 ) + 3) − 1]𝑛
𝑖=1

𝑛
𝑖=1

(𝑒𝜇 ∑ 𝑥𝑖
𝜋𝑛

𝑖=1 − 1)
3

− ∑
2𝑥𝑖

𝜋log𝑥𝑖𝑒𝜇𝑥𝑖
𝜋

(𝑒𝜇𝑥𝑖
𝜋

− 𝜇𝑥𝑖
𝜋 − 1)

(𝑒𝜇𝑥𝑖
𝜋

− 1)
2

𝑛

𝑖=1

 

The observed information matrix can be defined as  

𝐼 = − (
𝐼11   𝐼12

𝐼21  𝐼22
) 

And the variance-covariance matrix is given as 

𝑉 = (
𝑣11   𝑣12

𝑣21   𝑣22
) = (

𝐼11   𝐼12

𝐼21  𝐼22
)

−1

 

We used the corresponding MLE to replace the parameters to produce the estimate, which may be illustrated as 
1

^ ^

^
11 12

^ ^

21 22

I I
V

I I

−

 
 =
  
 

 

 

We can construct the (1 − 𝛽)100% confidence intervals using the above variance covariance matrix for the parameters 𝜇 

and 𝜋 in the form 

^ ^

/2 /2var( ), var( )Z Z    
 

   

 

Where, 𝑍𝛽 indicates the upper 𝛽𝑡ℎ percentile of standard normal distribution. 

 
6. Shannon Entropy  
Entropy quantifies the degree of diversity within a given system. One of the famous entropies is Shannon entropy which may 
be illustrated as  

𝑆𝐸(𝑥) = − ∫ 𝑓(𝑥)log𝑓(𝑥)𝑑𝑥
∞

0
   (17) 

Substituting equation (4) in (17), we get 

𝑆𝐸(𝑥) = − ∫
𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
−1)

2 log (
𝜇2𝜋𝑥𝜋−1𝑒

𝜇𝑥𝜋−
𝜇

𝑒𝜇𝑥𝜋
−1

(𝑒𝜇𝑥𝜋
−1)

2 ) 𝑑𝑥
∞

0
  (18) 
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By taking integral of eq (18), we get the result as 

𝑆𝐸(𝑥) = −2log𝜇 − log𝜋 + log𝜇 (
1 + 𝜋

𝜋
) log (− ∑

(−1)𝑘

𝑘

∞

𝑘=1

) 𝑘 [𝐸𝑖(𝑧) + log (
−𝜇

𝑧
) 𝑒𝑧] |

0

∞

− ∑
(−1)𝑘

𝑘
𝜇𝑘(−1)2𝑘

 

)(1 − 𝑘, −𝑧)

∞

𝑘=1

|
0

∞

− (𝑧 − 1)𝑒𝑧 + 𝐸𝑖(𝑧) + log (
−𝜇

𝑧
) 𝑒𝑧

 

Where, 𝐸𝑖is the exponential integral. Further, it was assuming that 𝑘 − 2 ≠ 0, 𝑘 − 1 ≠ 0 and (.)  is a gamma function. 

 
7. Real Data Application  
This section utilized the COVID-19 and repair time data sets to evaluate the robustness of the proposed distribution. Further, 
the proposed distribution is assessed against the Weibull (Wb), Transmuted Inverse Weibull (TIW), Inverse Weibull (IW), 
Alpha Power Weibull (APW) distributions and Exponentiated Inverse Flexible Weibull Extension (EIFWE) distribution for 
the stability of proposed distribution. For further evaluation the effectiveness of the proposed model, AIC, CAIC, HQIC, 
and BIC are utilized.   
 
Data Set 1: Mortality Rate of the COVID-19 Patients from Mexico   
The dataset has 106 observations showing the patients mortality rate during the COVID-19 pandemic in Mexico is follows 
as. 
1.7652, 1.2210, 1.8782, 2.9924, 2.0766, 1.4534, 2.6440, 3.2996, 2.3330, 1.2030, 2.1710, 1.2244, 1.3312, 0.6880, 1.1708, 2.1370, 
2.0070, 1.0484, 0.8688, 1.0286, 1.5260, 2.9208, 1.5806, 1.2740, 0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756, 1.7626, 2.0086, 
1.4520, 1.1970, 1.2824, 0.6790, 0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572, 2.0316, 1.6216, 1.3394, 1.4302, 
1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.6650, 1.5708, 1.7102, 0.6456, 1.4972, 1.3250, 1.2280, 0.9818, 0.9322, 1.0784, 
2.4084, 1.7392, 0.3630, 0.6654, 1.0812, 1.2364, 0.2082, 0.3600, 0.9898, 0.8178, 0.6718, 0.4140, 0.6596, 1.0634, 1.0884, 0.9114, 
0.8584, 0.5000, 1.3070, 0.9296, 0.9394, 1.0918, 0.8240, 0.7844, 0.6438, 0.2804, 0.4876, 0.6514, 0.7264, 0.6466, 0.6054, 0.4704, 
0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652, 0.5012 and 0.3846.  
 

 
Fig-3: TTT plot of COVID-19 Data 
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Fig-4: Theoretical, Empirical, QQ & PP Plots of COVID-19 Data 

 

Table 2: Maximum Likelihood Estimates     

Model Estimates    

ETW 0.8946919, 1.2616699 

Wb 0.5859061, 1.9205049 

TIW 1.340692, 1.234306 

IW 1.1682595, 0.8635808 

APW 0.2411186, 2.1283381, 0.3892093 

 

Table 3: Goodness of Fit Criteria 

Model AIC CAIC BIC HQIC 

ETW 188.7951 188.9116 194.122 190.9541 

Wb 191.3865 191.503 196.7134 193.5455 

TIW 199.9303 200.0469 205.2572 202.0894 

IW 245.9029 246.0194 251.2298 248.0619 

APW 191.304 191.5393 199.2943 194.5425 

 
Fig-3. the TTT plot for COVID-19 data which noticeably reveals a non-monotonic hazard rate shape, while Fig 4 
demonstrated the theoretical and empirical with P-P and Q-Q plots for data set confirmations the best fit of the data on ETW 
distribution. Table 2 depicts the MLEs for unknown parameters of ETW distribution. Likewise, Table 3 offers the results of 
various criteria intended for the selection of statistical models. The findings of the goodness of fit test are under Table-3, 
indicates that ETW better fits than other well-known distribution.   
 
 
 
 



1038 A New Flexible Exponential Type Family Of Distributions: Application With COVID-19 Data And Simulation 

 

Kurdish Studies 

Data Set 2: Airborne Communication Transceiver Repair Time 
The data set is comprised of maintenance repair times for an airborne communication transceiver with the values 0.2, 0.3, 0.5, 
0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 
4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, and 24.5. 

 
Fig-5: TTT plot for Airborne Communication Transceiver Repair Time 

 
Fig-5. tell us how well the model fits the data. The convex graph in Fig-5 clearly illustrates that this data indicates the presence 
of a non-monotonic hazard rate shape. 
 

Table 5: Maximum Likelihood Estimates 

Models Estimates 

ETW 0.09057463, 0.96825760 
W 0.3250289, 0.9094521 
APW 0.03415170, 1.10032953, 0.09698703 
EIFWE 0.3874405, 0.2601615, 1.0323949 
TIW  -0.2843674, 1.0527772 

 
Table 6: Goodness of Fit Criteria 

Models AIC CAIC BIC HQIC 

ETW 210.885 211.1577 214.5852 212.2774 
W 218.3281 218.6016 222.0291 219.7213 
APW 216.4851 217.0432 222.0355 218.5737 
EIFWE 215.0345 215.5927 220.585 217.1232 
TIW  211.3585 211.6312 215.0588 212.7509 

 
In Table-5, the MLE’s for the ETW distribution's unknown parameters are given. The results of the goodness of fit measures 
are given Table-6. The results clearly show a fever value of all these criteria for the proposed model as compared to the existing 
models. Thus, the addition of this new probability distribution to the existing literature of probability theory plays a prominent 
role in further improvement of the model.  
 
8. Simulations 
In this section, equation (13) is employed to produce artificial data from the ETW distribution which is iterated 1000 times 
for different values of parameter with varying sample size. Table 7 illustrates that with increasing sample size, the Mean Square 
Error (MSE) and bias decrease, implying that the proposed model outperforms. Mathematically, MSE and Bias are defined 
as.  

𝑀𝑆𝐸 =
1

𝐾
∑(𝛽𝑖 − 𝛽)2

𝐾

𝑖=1

 

𝐵𝑖𝑎𝑠 =
1

𝐾
∑(𝛽𝑖 − 𝛽)

𝐾

𝑖=1
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Table 7: MSE and Bias of ETW Distribution 

𝒂 𝒃 𝒏 𝑴𝑺𝑬 (𝜇) 𝑴𝑺𝑬 (𝝅) 𝑩𝒊𝒂𝒔 (𝜇) 𝑩𝒊𝒂𝒔 (𝝅) 

0.02 0.2 30 0.019866 0.000893 0.076949 0.001775 

    60 0.004828 0.000415 0.034237 0.000822 

    90 0.002803 0.000273 0.025201 0.000767 

    120 0.001714 0.000202 0.019572 0.000428 

    100 0.002406 0.000271 0.024206 0.000153 

    200 0.000669 0.000125 0.011555 0.000668 

    300 0.000502 8.90E-05 0.009094 0.0007 

0.3 0.03 30 0.043341 2.82E-05 0.040909 0.001533 

    60 0.024179 1.43E-05 0.013737 0.001012 

    90 0.016235 8.46E-06 0.012569 0.000648 

    100 0.01449 7.44E-06 0.011915 0.000453 

    200 0.006738 3.56E-06 0.007297 0.000268 

    300 0.00503 2.40E-06 0.005076 0.000142 

0.2 0.02 30 0.038175 1.25E-05 0.058581 0.001009 

    60 0.016242 5.96E-06 0.026375 0.000523 

    90 0.011133 3.77E-06 0.015124 0.000384 

    100 0.010623 3.49E-06 0.019473 0.000237 

    200 0.005172 1.73E-06 0.008484 0.000216 

    300 0.003298 1.12E-06 0.006335 0.000119 

 
9. Conclusion  
Using the FETW family, we have developed a new lifetime distribution called ETW distribution with two parameters. Various 
statistical features of the ETW distribution are computed i.e., order statistics, moments, quantile function, hazard function, 
survival function, and mean residual life function. For estimation of unknown parameters, we used the traditional method 
maximum likelihood. We have tested both simulated data and real data of the mortality rate COVID-19 patients of Mexico 
and Airborne communication transceiver repair time to examine the effectiveness of the proposed model. The proposed 
distribution is put up against a number of well-known distributions, including the Weibull distribution. Results from the 
COVID-19 and repair time data sets reveal that the ETW distribution is a better fit and more flexible compared to other 
distributions.  
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