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Abstract: In this research, four signal decomposition techniques (Empirical mode decomposition (EMD), Multivariate 
singular spectral analysis (MSSA), Wavelet Packet Decomposition (WPD), and Discrete wavelet transform (DWT) are 
studied for the optimal selection of signal processing technique to classify the Power Quality disturbances (PQD). Twelve 
types of single, multiple and synthetic PQD dataset is simulated from MATLAB R2020b, and real data is acquired from 
IEEE power quality guideline 1159.3-2019. Statistical parametric analysis for feature decomposition and selection are also 
explained as well. These statistical parameters are then subdivided into three groups to examine the contribution of each 
parameter to the selected feature extraction methods. However, MSSA and WPD have the highest accuracy of 99% and 
99.9%, with the inclusion of higher-order statistical (HOS) features. Finally, features from each group were fed into a 
convolutional neural network (CNN) based classifier to classify the power quality disturbances. This study compares the 
selected techniques for optimal features with and without HOS and highlights the fundamental properties of each method. 
The proposed method was found to have reliable high classification accuracy under noisy and noiseless conditions. 
 
Keywords: Power quality disturbances, Higher order statistics, Convolutional neural networks. 
 

1. Introduction 
Power Quality (PQ) has become a key topic for research due to its significance in the generation and distribution of electric 
power systems [1], [2]. The PQ abnormalities detection and monitoring capabilities of the system are vital to determine 
how much electric equipment is affected. On-time action can save the electric system from severe damages [3], [4]. In the 
modern electric power system, the introduction of the renewable energy source and the increasing adaptation of distributive 
generation in distribution networks has valued the importance of PQ monitoring and analysis [5], [6]. The state of the fast art 
equipment takes place the traditional process of visually identifying the abnormalities [7]. The PQ events include sag, swell, 
harmonics, transients, interruption, flicker, etc. , all of which are present in the nature of PQ events., separated the typical 
issues in the distributive networks [8]. These abnormalities are presented in the system known as PQ disturbances in the form 
of single and mostly combinations [9]. PQ analysis generally consists of feature extraction of PQ disturbances, feature 
selection, and classification. 
 
Essential signal processing techniques that are used for the feature extractions include Discrete Fourier transforms (DFT), 
Short Time Fourier transforms (STFT), Fast Fourier transforms (FFT), and Fourier transforms (FT) [10], [11], [1- 3]. PQ 
disturbances are generally non-Gaussian and non-stationary in nature. FT is employed to analyze the stationary signal, and STFT 
is the extension of DFT but it cannot process the non-stationary signal since it has a fixed window size [10]. In general, FT 
families are not suitable for handling non-stationary signals. S-transform (ST) is the combination of STFT and wavelet 
transform (WT), and it is one of the most appropriate tools for non-stationary signal processing. ST is found to be superior 
because of the excellent ability to localize the signals and modulation of sinusoidal is fixed concerning time. However, the 
redundant representation of the time-frequency domain and high computational time as compared to WT. 
 
Wavelet transform (WT) is a signal processing technique that provides the analysis of signals with the help of the variable 
size windows and long windows are used for low frequency bands and short windows are used for high frequency bands. This 
provides good time-frequency resolution and can be used to identify and classify high and low frequency issues in PQD. 
However, selecting the appropriate mother wavelet and sampling frequency for WT can be challenging [12]. Wavelet 
packet decomposition (WPD) is a signal processing technique that is used to decompose a signal into its constituent wavelets at a 
specific level. It is a variation of wavelet decomposition that allows for more flexibility in analyzing signals by breaking them 
down into both their frequency and time domains. WPD is often preferred over the discrete wavelet transform (DWT) 
because it allows for a fixed frequency band. [13]. 
 
EMD is also a recently developed signal processing technique and is successfully applied in many engineering applications 
[14]. EMD is one of the adaptive and suitable decomposition methods for analysing the non-stationary and non-linear PQ 
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disturbances. It decomposes the time-series signal into another time series component called intrinsic mode functions (IMFs) 
[15]. Despite the better decomposition results, EMD is sometimes unable to decompose the signal due to the mode mixing 
leading to the false IMF decomposition. To solve this issue, EEMD is proposed [16]. In the EEMD method, random 
noise is added to the signal, decomposed using the EMD technique, and the process repeats with different noise series unless 
it obtains the realistic IMFs. This process may increase the computational burden. It is the severe drawback of EEMD, 
where data volume is enormous, especially in the case of PQ disturbances [17]. 
In this study, the effectiveness of four different techniques for the extraction of significant features from PQ events was 
investigated. The optimal selection of the features from the sub-bands of WPD, DWT, EMD, and MSSA are determined by 
using six distinct statistical features, including higher-order statistics (HOS) (entropy, energy, standard deviation, 
skewness, mean, and kurtosis) [18]. The application of a classifier based on a convolutional neural network (CNN) is used for 
the classification of PQ disturbances. [19]. The statistical features are divided into three groups for detailed analysis of feature 
extraction techniques, 1), four types of features excluded HOS features. 2), first two, and including HOS features. 3), all six 
types of components. The performance of these feature extraction techniques has been examined on the IEEE workgroup 
1159.2019 and synthetic data generated from MATLAB R2020b. 
 
This study has the following contribution. 
1) This research presents the comparative study of feature extraction techniques and explain the pros and cons of each 

method. 
2) A modified architecture of 1D-CNN is employed for the classification. Batch normalization is utilized instead of dropout 

layer to sort out the overfitting problem. 
3) To validate the proposed methods. A comprehensive study on classification accuracy, computational complexity and 

comparative analysis is presented. 
4) Simulated data is generated from the MATLAB and real time data is obtained from the IEEE 1159.2019. The complex 

or multiple PQ disturbances are also considered in this paper. 
 

2. Feature Extraction 

2.1 Discrete Wavelet Transform 
PQD are sudden changes in an electrical signal's voltage, current, and magnitude. These disturbances are non- stationary, 
meaning they are not constant over time [20]. The Discrete Wavelet Transform (DWT) is a signal processing tool that is 
effective in analyzing and simplifying the complexities of disturbances encountered during computations [21]. It achieves this by 
decomposing a discrete-time signal x[n] into various levels of wavelet coefficients that carry both time and frequency 
information. Selecting an appropriate mother wavelet is a crucial consideration in the DWT. The DWT algorithm begins by 
applying Low Pass (LP) and High Pass (HP) filters to the original level of the discrete time signal, followed by down 
sampling by a factor of 2. The HP filters extract the high-frequency components of the signal, known as detail coefficients 

D1, while the LP filters extract the low-frequency components, known as approximation coefficients 𝐴1. The wavelet 

transform can be represented in terms of scale 𝜑(𝑡)and wavelet functions 𝜔(𝑡) for both the approximation 𝑙 and detail 

coefficients ℎ of the signal 𝑥[𝑛]. 
 

 
 

Secondly, at the next level, the value of 𝐴𝑔 is change to 𝑥[𝑛] and the value of 𝑔𝑚 is raised by one. The process described 

above will continue until g reached the maximum number of levels that can be selected, as depicted in Figure 1. 
 

 
Figure 1: Decomposition of DWT for level two 
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2.2 Wavelet Packet Decomposition 
The Wavelet Packet Decomposition (WPD) is a development of the Discrete Wavelet Transform (DWT). It decomposes 

the detail coefficients, 𝐷𝑔 Moreover, approximation coefficients of the signal in the same way that DWT decomposes. 

The main difference between the two is that WPD increases the number of wavelet coefficients by a factor of 2𝑔 whereas they 

are increased by 𝑔 + 1 in DWT. It allows WPD to attain better frequency resolution when decomposing the signal [22]. 
However, DWT may skip important information in the high frequency components of the signal, as depicted in Figure 2 
 

 
Figure 2: Decomposition of WPD for level two 

 

2.3 Multiclass Singular Spectral Analysis 
An alternative approach to decompose non-stationary PQ disturbance signals into features is the multiclass singular spectral 
analysis (MSSA) method. MSSA is used for decomposing non-stationary signals of PQ disturbances into features. It involves 
four steps: Embedding, Singular Value Decomposition (SVD), Grouping, and Reconstruction of the signal. The signal is 
embedded into a higher-dimensional space using a sliding window approach, followed by SVD decomposition to obtain the 
singular vectors and singular values. The singular vectors are then grouped based on their similarity, and the features are 
extracted to reconstruct the original signal [23]. 
Assuming that the PQ disturbance signal is a uniformly sampled one-dimensional signal stored in a vector array, A is defined as 

𝐴 =  of length N where N is  where b is the position and window 

size W (1 < 𝑊 < 𝑁). The trajectory matrix C of the matrix A can be formulated as 
 

 
 

Where each column of matrix C is mapped to a lagged vector K, which is 𝑐𝐾 = [𝑎𝑘, 𝑎𝑘+1, … , 𝑎𝑘−𝐿+1]𝑇 ∈ ℜ𝐿, where 

𝑘 ∈ [1, 𝐾] and 𝐾 = 1 − 𝑊 + 𝑁. The covariance matrix stores complete information about the input signals. 

Trajectory matrix, 𝑆 = 𝐶𝐶𝑇, is used to obtain the lagged covariance matrix, S. Its eigenvalues are calculated and sorted in 

descending order as, (𝜆1 ≥ 𝜆2 ≥ ⋯ 𝜆𝐿 ≥ 0), and equivalent eigenvectors are (𝑈1, 𝑈2, … , 𝑈𝐿), and the trajectory matrix 

after SVD is presented as 

𝐶 = 𝐶1 + 𝐶2 +, … , 𝐶𝑑 

 

Where rank of the matrix is 𝑑 ≤ 𝑊. For simplification, it is considered as 𝑑 = 𝑊. As noted, the trajectory matrix, C, is a 

composite of multiple matrices. Each matrix 𝑋𝑙|𝑙 ∈ [1, 𝑊] is referred as an elementary matrix and since it is equivalent to its 

respective eigenvalue, the elementary matrix defines the decomposition of the signal is defined by 
 

    (5) 

Where 𝑣𝑏 is define as 

(6) 
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The matrix of empirical orthogonal functions is referred to as the 𝑈 matrix, and the matrix of principal 

components is referred to as the 𝑉 matrix. Both matrices are defined relative to a particular position of b. 
 

 
 

2.4 Empirical Mode Decomposition 
EMD is another appropriate method to decompose the non-stationary and non-linear signals. Like other decomposition 
methods, EMD does not deteriorate the signals into sets of coefficients but decomposes the time signals into another kind of 
time signal known as intrinsic mode functions (IMFs) [14]. These are the following steps to demonstrate the IMFs of a signal 

𝑥(𝑡). 
1) Begin by setting ℎ(𝑡) = 𝑥(𝑡). 
2) Use spline interpolation to find the upper and lower envelope by connecting the local maxima and minima. Calculate the 

mean 𝑚(𝑡) of the upper and lower envelope. 

3) Subtract the 𝑚(𝑡) from ℎ(𝑡) to obtain ℎ𝑜(𝑡). 

4) Check if ℎ𝑜(𝑡) satisfies the conditions for an IMF. If yes, consider ℎ𝑜(𝑡) as the first IMF, if not replace ℎ(𝑡) 

with ℎ𝑜(𝑡). 

5) Repeat the above steps 𝑘 times until an IMF component is isolated from the data. 
 
Furthermore, Subtract the IMF from the original signal to obtain the remainder. Use the reminder to extract another IMF, 
until the note becomes a monotonic function. In the end, the original signal is presented as 
 

(9) 
 

Where 𝑟𝑛 is the remainder of the signal 𝑥(𝑡), 𝑑𝑖 is the 𝑖𝑡ℎ IMF extracted from 𝑥(𝑡). 
 

2.5 Feature Extraction using Statistical parameters 
For accurate classification, the optimal feature extraction is a critical stage [24]. The details of statistical parameters can be seen in 
the literature [25]. DWT, WPD, and MSSA decomposition techniques represent the PQ disturbances coefficients datasets, while 
EMD generates IMFs of equal length as the original input signal. The selection of features from statistical parameters 
significantly reduces the sets of features and characterize the behavior of the PQ disturbances signal. The selected statistical 
parameters were estimated for the classification of PQ disturbances. Equations for each features are stated in Table 1. 

If 𝑋{𝑥1, 𝑥2, … , 𝑥𝑁} are the sub-bands (or IMF), where 𝑁 is the length or number of samples in sub-band or 

decomposition. 𝑖 = 1,2,3, … , 𝑘 , are the number of decompositions at level 𝑘. However, the higher-order statistics (HOS) 
features such as skewness and kurtosis are considered and three manually selected combinations of these features are 
examined in this study. Each combination of different feature set belongs to the separate experiment. Moreover, the detailed 
experiments are described in subsection 2.4. 
 

Table 1: Equations of the features for each of the sub bands. 

Sr. No Features Name Equations 

1. Energy 𝐸𝑘𝑖 =∑ (|𝑋𝑖𝑗|
2
)

𝑁

𝑗=1
 

2. Entropy 𝐸𝑇𝑘𝑖 = −∑ 𝑋𝑖𝑗
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2)
𝑁

𝑗=1
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3 1-D Convolutional Neural Network (CNN) 
A novel approach for classification of PQ disturbances using CNN based soft-max classifier has been presented. In general, 
CNN is applied for feature extraction and classification, However, it has recently shown better results in many fields like object 
detection, image classification, face recognition, and vision tasks [26], [27], [28]. CNN provides improved classification 
accuracy in vision application [29], as compared to the deep neural network (DNN) and commonly used support vector 
machine (SVM) [27]. 
 

3.1 Proposed architecture of 1D-CNN: 
The proposed architecture of 1-D CNN can be seen in Figure 3. In generally, three layers are stacked to extract the features 
which consist of convolution, pooling and batch normalization layers. However, in this paper, the external feature extraction 
techniques are considered and the convolution layer is not utilized. The fully connected and softmax layers are used for the 
classification. The pooling layer along with the extracted feature matrix is inserted to reduce the dimensions and prominent the 
features of power disturbances. The dropouts or batch normalization along with the fully connected layer can be adopted 
to reduce the overfitting and enhance the ability of generalization. In this research, batch normalization provides better 
training speed and more efficient to cater the overfitting problem. The PQDs are 1-D signal and completed different form the 
images. The modified architecture use the1D arrays instead of the 2D matrix. 
The architecture of the 1-DCNN model that are utilized in this paper is consists of pooling with batch normalization layer, 
and fully connected soft-max layers, as shown in Figure 3. In this research, the 1-DCNN model consists of six max- pool 
layers and three dense or fully connected layers. 

1) Pooling Layer 
The primary role of the pooling layer is to both map the features and decrease the dimensionality of the data. While average 
pooling is more prone to being affected by noise, max pooling generally performs better. Both average pooling and 
max pooling return either the average or maximum value to the activation function. 
 

 l l

n n nz f w
    (9) 

where
l

nz  is the output and fn is the non-linear function. The rectified linear units (ReLU) is deployed as activation function 

in this research. It perform better as compared to other activation function such as tanh. ReLU restricts all output neuron to 
become active and accept only the positive value and convert the negative into null value. It also help to increase the efficiency 
and reduce the computational burden. The soft-max layer is expressed as 
 

                  (10) 
 
Where, zn represents the input received from a fully connected layer, while J represents the number of classes or the number 

of soft-max layer units. 
 

 
Figure 3: The complete structure of 1-D Convolutional neural network 
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2) Batch-Normalization 
In generally, dropout layer is utilized to overcome the overfitting problem due to complex nature of the data. However, Batch- 
normalization (BN) is more advance and feasible method to overcome this problem. It use the normalization operator to solve the 
gradient disappearing problem. The max-pooling layer with BN is utilized to detect errors. The mean square error of the output can be 
computed as 
 

(11) 

Where "l" represents the number of classes, "q" is the input vector,  is the corresponding target, and " is 
the output vector. 
 

3) Dense and Softmax layer: 

Fully connected layer or dense layer has the 𝑙𝑡ℎ fully connected layer and softmax is the activation function and connected 
with the dense layer. The softmax function predict the value of given class of each category. The category with highest 
probability will be the output. 
This research separates the DWT, WPD, MSSA, and EMD with 1DCNN based algorithms into three parts. 1) Feature 
extraction, 2) Statistical parameters, and 3) classification. This section evaluated four feature extraction methods (DWT, 
WPD, EMD, and MSSA) to choose the best feature extraction technique. Four level decomposition is used for all four 
methods. The statistical parameters are introduced to examine the change in the results of feature extraction methods. Table 2 
described the detailed information about the features chosen for different experiments. The optimal features from 
different experiments are fed to the IDCNN classifier to examine the capability of these feature extraction methods for the 
classification of PQ disturbances. The detail of the DWT, WPD, MSSA, and EMD with IDCNN based method is shown 
in Figure 4.  
 

Figure 4: Block diagram of the DWT, WPD, MSSA, and EMD with IDCNN based scheme 

 
 

Table 2: Detail of the number of features in each decomposition technique 

Decomposition Method No. of Sub-bands No. of Features 

Exp 1-2 Exp 3 

DWT 5 20 30 

WPD 16 64 96 

EMD 5 20 30 

MSSA 5 20 30 

Table 3: Four level frequency bands of WPD, DWT, and MSSA 
 

4 Experiment 

4.1 Generation of Dataset 
A dataset of single and multiple PQDs was generated in PSCAD/EMTDC power simulation software for distribution 
network. In this study, 12 types of single and numerous PQDs were considered. The line faults such as a line-to-line double 
and single line to ground faults generated the sag, interruption, and swell PQDs. The uncontrolled speed of motor and 
capacitor switching generated oscillatory, impulsive, and flicker types of PQDs. Other causes of PQDs were nonlinear load, 
power electronics devices, tripping of the circuit breaker, and overheating of the neutral conductor. The synthetic PQ 
disturbances were generated from the parametric model and were simulated in MATLAB R2020b. Two thousand and four 
hundred waveforms were generated for 12 types of PQDs. Two hundred samples, ten cycles, fundamental frequency 50 
Hz, the sampling frequency of 10 kHz for each PQ disturbance was considered. Some of the real waveforms are shown in 
Figure 5. The parametric equation model is shown in Table A1. The noise levels introduced in this experiment are 0dB, 
20dB, and 50dB, respectively. The real PQD waveform has been taken from the IEEE power quality workgroup 1159.3- 
2019. The synthetic PQ disturbance waveforms are shown in Figure 6. 
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Figure 5: Real time PQ waveforms of different disturbances such as sag, flickers, notch etc. 

 

 
Figure 6: Simulated PQ disturbances waveforms using Matlab such as , (a) Normal; (b) Sag; (c) Notch; (d) Sag and swell; 

(e) Oscillatory transient; (f) Harmonics; (g) Flicker; (h) Impulsive transient; (i) Sag and harmonics; (j) Sag, swell and harmonics; 
(k) Sag and oscillatory transients; (l) Sag, swell and oscillatory ransient 

 

4.2 Feature Selection and the Parameters 
In this study, four different methods of feature extraction are evaluated and compared. The wavelet technique which is 
employed is based on the multiresolution analysis. The analysis is done on four number of wavelet decomposition levels. The 
frequency range for PQ disturbances is considered as 50 Hz. The details of the frequency range for the four- 
decomposition level and the approximation signal of WPD, MSSA, and DWT are presented in Table 3. Sys4 is used for 
decomposition and approximation signals, which produced superior results. The other wavelet functions also performed 
very well. Selecting suitable wavelet functions for a specific application depends upon the trial-and-error approach. 
After normalizing the PQ disturbances, the DWT, EMD, MSSA, and WPD are applied to decompose the PQ disturbance 
signals into the sub-bands. MSSA also decomposed the primary signals into four levels and approximation signals. EMD 
disintegrated the signals into four IMFs and residual signals. MSSA decomposed the PQDs into four groups, which provided 

four detailed coefficients (𝐷1, 𝐷2, … , 𝐷4)and an approximation coefficient 𝐴4. 
 

However, the WPD decomposition technique utilized four decomposition levels, which generated 16 sub-bands due to 2g 

= 24. Table 3 provides information on the frequencies contained in each sub-band of WPD, and their corresponding 
relationships with DWT sub-bands. The number of features used in each experiment and decomposition method are shown in 
Table 2. WPD generates eleven additional sub-bands compared to the other decomposition techniques, which results in a 
difference in the number of features. Figure 7 illustrates the decomposition of PQD signals using DWT, EMD, WPD, and 
MSSA. 
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Table 3: Four level frequency bands of WPD, DWT, and MSSA 

Sub-band 

No. 

Decomposition 

Signal 

Frequencies  

(Hz) 

DWT/ WPD 

/MSSA level 

1 SB40 0-4.2 APX.4 

2 SB 41 4.2-5.9 DTCo.4 

3 SB 42 6.0-9.0 DTCo.3 

4 SB 43 9.1-13.0  

5 SB 44 13.1-16.0 DTCo .2 

6 SB 45 16.1-19  

7 SB 46 19.1-22  

8 SB 47 22.1-25.9  

9 SB 48 26.0-28.9 DTCo .1 

10 SB 49 29.0-32.1  

11 SB 4A 32.2-35.1  

12 SB 4B 35.2-38.1  

13 SB 4C 38.2-41.0  

14 SB 4D 41.1-44.0  

15 SB 4E 44.1-47.0  

16 SB 4F 47.1-50.0  

 
Experiment 1 (Features without HOS), Experiment 2 (a combination of the first two features and HOS), and Experiment 
3 (All selected features) are described in section 2.5. These algorithms are tested more than 50 times to confirm the results. 
In this paper, the data set is separated into training and testing sets for 70-30% respectively.  
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Figure 7: PQ disturbances decomposition (a) EMD four level decomposition (IMF1-IMF4) (b) DWT four level 

decomposition (D1-D4) (c) MSSA four level decomposition (D1-D4) (d) WPD decomposition coefficient (1,1) and (2,1) 
 

5. Results and Discussion 
In this study, synthetic datasets are produced using MATLAB R2020b, and real datasets are taken from the IEEE 
1159.2019 task force. In this section, the four feature extraction techniques are separately evaluated, and compared to 
achieve the best optimal classification accuracy. The classification accuracy can be evaluated from the following equation [30]. 
 

 
 

Tables 4-6 show the overall classification accuracy using the comparative decomposition techniques for 12 types 
of multiple PQ disturbances. The outcomes of all feature combinations (experiment 1-3) for synthetic and real 
data are presented. The combination of statistical features in experiment 2 outperformed the experiment 1 and 
3. However, experiment 1 produced the worst classification accuracy among them. On the other side, EMD has 
the worst classification accuracy. In contrast, WPD has improved classification accuracy among MSSA, DWT, but 
MSSA has less computational complexity than other decomposition techniques. 
Table 3 provides a detailed explanation of the frequency ranges of decomposition signals of WPD, DWT and MSSA. It can be 
seen that the most frequently occurring sub-bands are those of MSSA and DWT, specifically in the detail DC1 frequency 
range of 25 to 28.1 Hz. However, the WPD method produces more features in the frequency range of 25-50 Hz, providing a 
deeper understanding of the differences between the classes. WPD produces a more finely detailed decomposition of the 
highest frequencies using lower scale levels than DWT and MSSA. 
WPD generates a detailed range of features for the same decomposition levels. In contrast, other decomposition methods 
require a more significant number of decomposition levels to achieve a similar number of distinctive features. The IMFs 
generated from PQ disturbance signals do not keep the maximum frequencies, and most of the information is lost during 
the decomposition. On the other side, the detailed DC1 of MSSA and DWT hold most of the lost information in the 
EMD. 
The classification accuracy may be affected due to the lost information. The use of the Ensemble EMD (EEMD) method 
solved this problem. EEMD produced the same number of IMFs for the same signal length. However, IMF2-IMF4 holds the 
lower frequency the same as A4 and D2-D4 in MSSA and DWT. 
Effective feature extraction of PQDs in MSSA is influenced by two key parameters. The first parameter is "α," which 
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determines the number of eigenvalues to be extracted during the decomposition process. The second parameter, known as 
the eigenvalue group (EVG), determines how the extracted components are grouped for optimal feature extraction. When all 
eigenvalues are included in the EVG, it may result in the removal of all features in the PQD signal. On the other hand, 
excluding small eigenvalues from the EVG results in more effective feature extraction, as small eigenvalues tend to contain 
noise. After multiple simulations, it was found that the optimal value of "α" for PQD decomposition using MSSA is 3. 
Another essential comparison in this study is related to three sets of features: Experiment 1, Experiment 2, and 
Experiment 3 are presented in Tables 4-6. In experiment 1, the classification rate was lowest, and 1-4 features were used. 
Including higher-order statistical (HOS) features 5 and 6 (skewness and kurtosis) in experiments 2 and 3 may be explained with 
superior accuracy. Generally, PQ disturbances are non-Gaussian, non-stationary, and nonlinear. However, First and second-
order statistics have a significant impact on PQ disturbances signal processing, and somehow very restrictive in analysing 
the non-stationary, and non-linearity. The superior resolution and dynamic ability to drive the feature of the signal using 
different kinds of WTs and MSSA decompositions are appropriate for analysing PQ disturbance. The powerful wavelets 
and MSSA may fail when extracting non-linear behavior within the signal. The inclusion of HOS improved the feature 
extraction capabilities of decomposition methods and can be seen in Tables 2.4-2.5. HOS cures the abnormalities such as 
nonlinearity, nonstationary within the signal, which makes HOS and time/frequency methods superior in the analysis of 
PQ disturbances. 
Figure 8 shows how DWT, EMD, MSSA, and WPD perform with different noise levels and real data. The overall 
classification accuracy decreases with the increase of noise level, which can be observed for all decomposition techniques and 
experiments. Compared with the DWT and EMD decomposition technique, the decrease in classification accuracy with the 
increase in noise level is lesser for MSSA and WPD using CNN based classifiers for all experiments. The classification 
accuracies of WPD and MSSA are very close, but WPD is leading among them. CNN based classifier using WPD has better 
classification accuracies than DWT, EMD, and MSSA, even at the high noise level of 20 dB. This method is more robust to 
the high level of noise. 
 

Table 4: Classification accuracy (%) for experiment 1 

   DWT EMD MSSA WPD  

Power Quality Disturbances Class 
Labelled 

Testing 
/Training sets 

dB Real data 

0 50 0 50 0 50 0 50  

Normal C1 200 96 96 95 94 97 97 98 98 97.7 

Sag C2 200 95 94 94 93 97 96 97 96 95.6 

Notch C3 200 95 94 94 94 96 96 96 95 94.8 

Flickers C4 200 94 93 94 93 95 94 97 96 96 

Impulsive Transients C5 200 96 96 92 91 96 95 96 96 95.5 

Oscillatory Transients C6 200 95 94 94 93 95 95 97 95 94.8 

Harmonics C7 200 95 95 94 94 97 96 97 96 96 

Sag with Swell C8 200 96 95 93 92 96 94 97 96 95.6 

Sag with Harmonics C9 200 97 96 95 94 97 96 98 98 97.9 

Harmonics with Sag and Swell C10 200 98 96 96 95 98 98 98 97 97 

Sag with Oscillatory Transients C11 200 97 97 95 93 98 97 98 97 97 

Oscillatory Transients with Swell, and Sag C12 200 96 96 95 95 97 97 97 96 96 

Classification Accuracy (%) 95.8 95.2 94.3 93.4 96.6 95.9 97.2 96.3 96.2 

 
Table 5: Classification accuracy (%) of PQ disturbances for experiment 2 

 

Class Labelled Training/Testing sets DWT EMD MSSA WPD  
 
Real data 

dB 

0 50 0 50 0 50 0 50 

C1 200 99 99 98 97 100 99 100 100 100 

C2 200 98 96 96 95 100 99 100 99 99 

C3 200 97 96 95 94 99 98 100 99 99 

C4 200 98 98 96 95 98 97 100 99 98.8 

C5 200 98 97 94 93 99 99 100 99 99 

C6 200 97 97 95 95 99 98 99 99 98.7 

C7 200 98 96 96 96 99 99 99.5 99.1 99 

C8 200 98 97 95 94 99 98 100 99.5 99 

C9 200 99 98 97 96 98 98 99.7 98.2 97.9 

C10 200 98 98 97 97 99 98 99.6 99.2 99 

C11 200 99 98 97 96 99 99 99.8 99.3 98.9 

C12 200 98 98 96 96 99 98 99.7 99.3 99 

Classification Accuracy (%) 98.1 97.3 96 95.3 99 98.3 99.8 99.1 98.9 
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Table 6: Classification accuracy (%) of PQ disturbances for experiment 3 

 Training/ DWT EMD MSSA WPD  

Class Labelled Testing sets dB Real data 

0 50 0 50 0 50 0 50  

C1 200 99 99 97 97 100 99 100 100 99 

C2 200 98 97 95 94 100 99 100 99 99 

C3 200 96 95 93 93 98 98 99 99 98.8 

C4 200 97 97 95 95 98 97 99 98 97.7 

C5 200 98 96 92 92 98 97 99 98.2 97.9 

C6 200 97 97 93 93 98 98 98 99 98.5 

C7 200 98 96 95 95 99 98 99 98.5 98 

C8 200 98 97 95 94 99 98 99 99 98.3 

C9 200 98 97 96 96 97 97 98.8 98 98.5 

C10 200 97 97 97 97 99 98 99 98.3 98 

C11 200 98 98 97 96 98 98 99 98.3 98 

C12 200 98 97 96 96 99 98 99 98.7 98.2 

Classification Accuracy (%) 97.6 96.9 95.1 94.8 98.6 97.9 99 98.7 98.3 

 

 
Figure 8: Classification performance of all decomposition technique for different noise levels 

 

5.1 Computation Complexity 
Figure 9 shows the computational complexity of all decomposition methods for each experiment. The experiment 
environment comprises MATLAB (R2020b), Intel core i7-6700 CPU @ 3.40 GHz, and 8 GB of RAM. 
The increase in the number of features can lead to a rise in computational complexity, and the impact of higher order statistics 
(HOS) is apparent in experiment 2. For all decomposition techniques, the computational complexity is the lowest in 
comparison to other experiments. However, WPD has a greater level of complexity due to its intricate frequency sub- bands 
analysis. In contrast, MSSA has lower complexity due to the optimal value of "α" and the requirement of fewer features 
than WPD. Considering these factors, it can be concluded that MSSA is the most appropriate decomposition technique if 
computational speed is a crucial factor. 
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Figure 9: Comparison of computational time(s) between decomposition techniques using CNN based classifiers for noiseless 

data 
 

5.2 Performance Comparison 
Finally, a comparison is made between this research and some recently published articles. These published articles adopted 
multiple decomposition techniques, as shown in Table 7. In [31], six decomposition techniques were presented for the 
classification of PQ disturbances, and 99.43% accuracy was achieved. In [32], two decomposition techniques multi-scale 
morphological gradient filter (MSMGF) and short-time modified Hilbert transform (STMHT) were compared to achieve 
better classification results. In [7], ordinary ST (OST) and Modified ST (MST) were compared for the classification of 
nineteen types of PQ disturbances, and the classification accuracy is 97.3%, which is less than the present study. In [33], 
authors compared second-generation WT (SGWT), maximum overlapping DWT (MODWT), and ST to determine the 
optimal method for classification, and it was found that ST achieved the highest classification rate of 97.39%. In [34], six 
decomposition methods were adopted with extreme learning machine (ELM) and Fraction Fourier Transform (FRFT) 
provided the best classification accuracy of 98.27%. This comparative study shows that the DWT, WPD, MSSA and EMD 
with IDCNN based study attained higher classification results. 
 

Table 7: Performance Comparison with published articles 

Ref. Classifier Data Type Decomposition methods No. of PQDs Accuracy (%) 

[31] DT-RF Simulated WT, HT, STFT, ST, FT, TTT 16 99.43 

[32] DTB Real and Simulated MSMGF, STMHT 10 99.70 

[7] SVM Simulated MST, OST 19 97.30 

[33] RF Real and Simulated MODWT, SGWT, ST 10 97.39 

[34] ELM Simulated FRFT, ELM 10 98.27 

- HOS, CNN Real and Simulated DWT, EMD, WPD, MSSA 12 99.90 

 

6. Conclusions 
MATLAB and IEEE task force 1159.3-2019 has generated two types of datasets, i.e., synthetic, and real. Four feature 
extraction techniques have been compared in this study, and optimal features are used to classify the PQ disturbances. 
Twelve types of multiple PQ disturbances were considered with different noise levels. Six types of statistical parameters 
were manually rearranged to form three types of groups. Three groups with varying sets of the feature were investigated, and 
the impact of higher-order statistics (HOS) was analysed. The results showed that the inclusion of HOS significantly affects 
the classification rate. WPD has higher frequency resolution features than the DWT and MSSA features. The inclusion of 
HOS also improved the feature extraction capabilities of DWT, EMD, and MSSA. This comparative study is one of the 
fewer, which presented a detailed analysis of the decomposition methods combined with HOS for the classification of 
PQ disturbances. However, MSSA has been found to be less computationally intensive than other decomposition 
methods. Higher classification rates revealed that these methods are sensitive to noise. The DWT, WPD, MSSA, and EMD 
with IDCNN based model have significant potential to accomplish good classification accuracy. The increased classification 
accuracy serves as proof that this study has the potential for application in various areas, including but not limited to image 
analysis, facial recognition, fault detection, classification, recognition, ECG signal detection, and classification. 
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