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Abstract  
Traditional Chinese medicine (TCM) is known for its diverse components, multiple therapeutic targets, and intricate 
mechanisms that offer considerable advantages in disease treatment. Identifying drug targets stands at the core of TCM 
network pharmacology research. Over the years, various web tools targeting drug discovery with diverse features have been 
created to aid in target prediction, thereby significantly advancing the field of drug discovery. This study presents the Herb-
Symptom-Target Network for predicting herb-target associations via symptom-related links. It aims to create concise feature 
vectors for herb-protein and herb-symptom interactions in a complex network. Through node resource allocation and gene 
expression data, protein network weights are assigned to identify protein complexes using core-attachment and second-order 
neighbors. To understand the molecular mechanisms of herbs based on their clinical effects, machine learning techniques are 
utilized to predict complex herbal protein interactions. This involves integrating heterogeneous information from herbal 
medicines, symptoms, corresponding targets, and their relationships. As a result, potential targets of herbs within protein 
complexes are identified. The prediction of herb targets involves extracting feature vectors for network edges, which are then 
refined using supervised learning approaches. Experimental results demonstrate the method's effectiveness and validity when 
compared to state-of-the-art herb-target prediction techniques. Additionally, several predicted herb-target interactions have 
been manually validated using independent literature, confirming the method's potential to successfully merge diverse 
information for predicting new herb-target interactions. 
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1- Introduction 
Traditional Chinese Medicine (TCM) draws on ancient wisdom to create remedies like Fangji [1, 2]. The 'single disease, single 
drug' approach faces challenges with complex diseases, leading to a focus on drug combinations for increased efficacy, cost 
reduction, and drug repurposing [3-5]. Understanding interactions between drugs and target proteins is vital for drug discovery 
[6]. TCM's formula-based treatments encounter difficulties due to complex ingredients and unclear mechanisms [7, 8]. 
Research targets improving efficacy and reducing side effects through network-based screening and in silico drug selection [9, 
10]. A network-based method is recommended for predicting drug groups and examining correlations [11], with the 
DrugCombDB facilitating exploration of therapeutic effects [12]. Biomarker networks predict drug combinations, while 
network perturbation analysis enhances efficacy and minimizes side effects [13-14]. Strategies for reducing drug toxicity involve 
studying target interactions in protein networks and using neural networks for multi-drug side effect modeling [15, 16]. 
Network methods like CIPHER and drugCIPHER are employed for disease gene and target prediction [17-18].The integration 
of multi-omics data [19] aids in predicting synergistic cancer drugs, while the CE-BLAST tool calculates antigen distances for 
antiviral vaccine design[20]. Traditional Chinese Medicine (TCM) research employs systems pharmacology to illustrate herbal 
treatment effects for complex diseases[21-22]. Integrative pharmacology is set to reshape TCM formula exploration by 
leveraging the TCMIP database [23]. Furthermore, a standardized template using gene expression data from 102 herbal 
ingredients unveils the synergistic mechanisms within herbal formula components from a network modular viewpoint [24-25]. 
Bioinformatics advancements, employing technologies such as multi-omics and biological networks [26–30], have paved the 
way for innovative drug pathways, particularly in TCM formulas. Progress has been evident in the development of medications 
derived from TCM herbs [31–34]. Studies have applied data mining, machine learning, and neural networks to forecast 
outcomes related to herbal formulas [35-39]. Integrating traditional theory with modern pharmacology remains a challenge, 
treating herbal formula prediction as a multi-label classification task [40-41]. Developing appropriate scores for training herbal 
formulas is a significant hurdle [42-43]. Topic models, FangNet, and neural networks are utilized in herbal formula prediction, 
emphasizing the importance of merging classical theory with modern mechanisms [44-47]. The TCMFP method combines 
Traditional Chinese Medicine expertise, artificial intelligence, and network algorithms to identify the most effective herbal 
formulas for treating complex diseases [47]. Our paper presents an Herb-Target interaction approach that combines herb, 
symptom, and protein data to tackle complex biological datasets. The method involves constructing a weighted heterogeneous 
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network, identifying protein complexes, and employing two learning methods. A new technique, NRAGE-WPN [48], leverages 
resource allocation and gene expression in Protein-Protein Interaction networks to improve accuracy by detecting dense 
complex cores. The approach learns low-dimensional vector representations for herb-protein and herb-symptom interactions, 
integrating contextual and topological details. These representations, along with herb compounds and protein/gene ontology 
data, are utilized as features for node learning. The model is trained and tested using supervised learning methods, with 
performance compared against other herb-target prediction techniques to evaluate its efficacy. 
 
2-Materials and Methods 
2-1Data Acquiring and Processing 
In this study, data on herbs, symptoms, and targets, along with their interactions, are collected from various public databases 
and literature sources, as outlined in Table 1. Specifically, herb-target relationships are obtained from the HIT2 database [49], 
serving as the dataset for the classification model's training and evaluation. Associations between herbs and indications are 
sourced from the Chinese Pharmacopoeia (CHPA, 2015 edition). Herb-herb relationships are formed based on a referenced 
study [50], while herb-efficacy associations are derived from the CHPA dataset. Using these herb-efficacy connections, vectors 
representing herbs based on efficacy are created. The cosine similarities between herb pairs are then calculated to establish 
herb-herb relationships, with these similarity metrics utilized as edge weights in the network. 
 

Table 1. All dataset for finding relation between all nodes. 
Name Composition Source 

Herb-target associations 
1254 herbs, 2208 targets and 168797 
herb-target links 

HIT2 

Herb-efficacy associations 829 herbs, 373 efficacies and 3830 herb-efficacy links CHPA 

Herb-symptom associations 465 herbs, 1027 symptoms and 16739 herb-symptom links CHPA 

Herb-herb associations 809 herbs and 1912 links Herbs linked with similar efficacy 

Protein-protein interactions 10622 proteins and 25133 interactions String10 

Symptom-symptom 
associations 

1027 symptoms and 7220 links 
 

SemMedDB 

Assume, there are n types of herbs and m types of efficacies. Each herb is represented by a vector of efficacy Vx = (e1, e2, …, 

ej, …, em), where ei=1 indicates that herb x has a relationship with efficacy j, otherwise there is no relationship. The efficacy-
based cosine similarity of herbs x and y can be calculated by the following equation. 

 
(1) cos(𝑉𝑥 , 𝑉𝑦)

=
𝑉𝑥 . 𝑉𝑦

|𝑉𝑥|. |𝑉𝑦|
 

 
The examination of connections between symptoms employed text-mining techniques. initially, these links were sourced from 
the Semantic MEDLINE Database (SemMedDB) [51-52]. Other studies have also investigated relationships between 
symptoms. In a study referenced as [52], the significance of each relationship is quantified using Fisher's exact test. Additionally, 
the Jacquard similarity measure has been employed in other research to assess similarities between symptoms. In our 
methodology, we identify interactions between symptoms based on shared neighbors within the herb layer. If the overlap 
between two distinct symptoms involves more than 500 herbs, they are considered to be interacting. Protein-protein 
interactions have been sourced from a well-known gene-gene interaction network database. Within this study, relationships 
with weights exceeding 700 [50, 53] are sieved, and a linear normalization process, represented by Equation (2), is applied. 
This normalization method, also known as min-max normalization, involves linearly transforming the initial data. Moreover, 
an innovative methodology that integrates resource allocation and gene expression in weighted Protein-Protein Interaction 
(PPI) networks is applied, comprising two principal phases. Initially, the reliability of protein interaction data is scrutinized by 
including common neighbor insights and gene expression profiles in constructing the weighted graph. Subsequently, the 
detection of protein complexes within this newly formed weighted graph is based on core-attachment and second-order 
neighbor analyses. The procedural steps for implementing this methodology are delineated in Figure 1. 
 

2 Y′

=
y − min⁡(y)

max(𝑦) − min⁡(𝑦)
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Figure 1 the workflow of construct PPI and finding core complex[48] 

 
2-2   Heterogeneous Network Construction 
Referring to Figure 2, a heterogeneous network is constructed utilizing three types of nodes: 1254 herbs, 1027 symptoms, and 
2208 protein targets. Additionally, the network encompasses five types of associations, including 1912 herb-herb associations, 
7220 associations between symptom, 25133 interactions between protein, 168797 herb-target associations between, and 16739 
herb-symptom associations (as detailed in Table 1). 

 

2-3 Detecting protein complexes 
Referring to Figure 3, a novel algorithm, influenced by [48], is utilized to form protein complexes, involving two key stages: 
constructing a weighted graph and identifying core-attachment protein complexes by exploring second-order neighbors. The 
initial phase combines gene expression data and common neighbor details in weighted graph construction, detailed further in 
[48]. Equation 3 introduces density and diameter metrics as parameters for defining protein complexes. A node is allocated to 
the present cluster (subgraph) if it fulfills the conditions specified in equation 4, meeting both criteria. Typically, γ is set around 
0.7, and δ is commonly designated as 2. 
(1) The density of a node V can be defined as the sum of the weights associated with each connection to this node. 
(2) The network diameter refers to the shortest path within a cluster. 

 
 
 
 
3 

𝑚 = ∑ 𝑤(𝑒)

𝑒𝑖𝑗∈𝐸

 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐺)

=
2 ∗ 𝑚

(|𝑁| ∗ (|𝑁| − 1)
 

4 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ≤ 𝛿⁡𝑎𝑛𝑑⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦
≥ 𝛾 

 
2-3 Learning Edge Features   

Graph embedding is a technique used to convert and encode the data structure from a high-dimensional space into a lower-
dimensional feature space, making it easier for machine learning algorithms to work with [54]. The resulting latent 
representation, often in the form of a d-dimensional vector, encapsulates the structural properties of nodes by representing 
their features. In this study, similarity-based approaches are employed to predict herb targets, focusing primarily on the graph's 
topology. These methods aim to predict missing links by calculating a similarity score, denoted as s(vx, vy), for pairs of nodes 
(vx and vy) based on the structural graph features. Conversely, extensive research has been conducted on network embedding 
to automatically recognize and map the structural attributes of the network in a latent space [55]. In previous studies, simple 
chemical infrastructure and drug-target sequence data were used to represent drugs and targets, requiring abundant molecular 
information and high-dimensional features [56]. However, when obtaining herb compounds and molecular information to 
represent herbs and targets, network embedding might not be necessary. In this study, molecular data about drugs and the 
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structural characteristics of the network are leveraged to predict the undisclosed connections between herbs and targets. To 
assign weights to the network edges, various metrics such as common neighbors, Jaccard coefficients, Salton Index, Sorenson 
Index, Adamic Adar, resource allocation, Hub Promoted Index, Preferential Attachment, Leicht Holme Newman, Parameter 
Dependency, Local Cohesion Structure, Car Based Index, Individual Attraction Index, and mutual information features have 
been explored.  
 

 
Figure 2 The overview of the proposed method is divided into two parts: (a) Construct a bipartite network between 

each pair of nodes (refer to Materials and Methods for detailed implementation). (b) Create a heterogeneous 
network by combining three types of nodes and five types of edges. 

 

 
Figure 3 Continuing with the overview of the method in the second part: (a) Construct the Protein-Protein 

Interaction (PPI) network and identify all protein complexes within the PPI network. (b) In the first phase of 
learning, focus on predicting the protein complex associated with each herb. (c) In the second phase of learning, 

aim to predict potential targets using Gradient Boosting Machine (GBM). 
 
2-4 Herb-Target Interaction prediction  
Protein complexes refer to clusters of proteins collaborating to perform specific biological functions. Identifying protein 
complexes through protein-protein interaction networks aids in comprehending cellular mechanisms and holds potential 
therapeutic applications. Clustering protein interaction networks is a common technique for extracting protein complexes. 
Genuine protein complexes often demonstrate significant functional similarity, leading to the utilization of function 
enrichment tests to underscore the biological significance of identified protein complexes. Table 2 showcases the assessment 
and juxtaposition of p-values for each complex, segmented into four intervals varying from minor to substantial. A p-value 
exceeding 0.001 indicates that the complex's function is likely randomly assigned and lacks biological significance. 
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Table 2. The effectiveness of functional enrichment and their associated p-values 

No. of clusters Effective(%) <E-15(%) E-15-E-5(%) E-5-0.001(%) 

64 95.27 44.5 45.34 5.43 

 
The feature representations derived from embedding learning, combined with the molecular specifics of herbs, are used as 
inputs for machine learning applications. These features play a crucial role in the herb-target edge prediction task, which seeks 
to predict the likelihood of the herb-target connection by leveraging their vector representations. Techniques such as Max or 
majority voting are part of ensemble supervised learning methods, where predictions from multiple models are combined. In 
this approach, the final prediction is determined by the prediction that receives the most votes or the majority of votes within 
the ensemble. Each model in the ensemble initially provides its prediction, and the prediction that appears most frequently 
across models is selected as the ultimate prediction. In our proposed method, two learning models are employed. Initially, the 
protein complex is identified using the Max Voting method in the first learner, following which, in the second phase, potential 
targets are predicted using Gradient Boosting. Gradient Boosting (GBM) utilizes boosting by amalgamating several weak 
learners to create a strong learner. Base learners in this approach are regression trees, with each subsequent tree in the series 
built on the mean squared error calculated by the preceding tree.  
 
3-Results 
3-1 Overview of method 
A novel technique in the paper predicts herb-target interactions from a heterogeneous network with two phases: detecting 
protein complexes and forecasting herb-target interactions. It begins with building the network with 3 node types and 5 edge 
types, totaling 4489 nodes and 219801 edges. Latent node representations are extracted using network embedding. Protein 
complex detection includes building a weighted graph and finding protein complexes via second-order neighbors, merging 
gene data and common neighbors. 
The proposed method encompasses dual learning phases: predicting protein complexes for each herb and forecasting potential 
protein targets within the proteins of the estimated complex. Ensemble supervised learning models, specifically max voting 
(used in the first learner) and Gradient Boosting Machine (GBM, utilized in the second learner), are employed to build 
classification models for forecasting herb-target interactions. 
 
3-2 Experimental Results 
In our proposed method, we have chosen the HIT2 database as the gold standard for herb-target interactions, containing a 
total of 168798 meticulously curated herb-target interactions. To assess the performance of the approach, a 10-fold cross-
validation technique has been employed. In this study, an ensemble supervised learning approach involving Max Voting for 
the first step and Gradient Boosting Machine (GBM) for the second step has been implemented to evaluate the method's 
performance. The effectiveness of the method is evaluated using the Area Under the Receiver Operating Characteristic 
(AUROC) curve and the Area Under the Precision-Recall Curve (AUPR). Results from ensemble learning are depicted in 
Table 3. This study employs various supervised learning methods such as Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Logistic Regression, Decision Tree, and Neural Network classification algorithms to generate a range of 
models from the dataset instead of relying on Max Voting. The output of each model is compared with others, and the targets 
with the highest occurrence are selected as the desired herb targets. In the context of ensemble learning based on Max Voting, 
the target with the greatest frequency is considered the final prediction for determining herb targets. It is noteworthy that five 
targets with the highest probability are selected, along with their respective probabilities, as the output of each model. As 
illustrated in Figure 4, the proposed approach's prediction performance is compared with the PRINCE method, an iterative 
algorithm that disseminates information from known nodes to other nodes in the network. The evaluation was conducted on 
a dataset [57] comprising 310 herbs, 1065 targets, and 8933 herb-target connections. The findings reveal that the proposed 
method surpasses the PRINCE method with a 17% higher AUROC (67%) and a 2% higher AUPR (86%) [58, 59] caution 
that ROC can be overly optimistic when assessing algorithm performance, especially on imbalanced data sets. In contrast, the 
Max Voting model demonstrates superior results in this context. The AUPR performance of the Max Voting model highlights 
its effectiveness over PRINCE in predicting herb-target interactions within heterogeneous networks. This contrast can be 
attributed to their underlying methodologies. PRINCE initiates by focusing on target nodes to attract other nodes sharing 
similar information, ideal for extracting local features in evenly distributed networks. In contrast, the proposed method 
integrates a hybrid functional and structural feature learning approach, enabling the incorporation of more domain-specific 
information to comprehensively learn node information within the heterogeneous network. 
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Figure 4. The performance of PRINCE and the proposed method was assessed on the HIT dataset, which 

comprises 310 herbs, 1065 targets, and 8933 herb-target links [57]. (A) AUROC. (B) AUPR. 
 

Table 3. The performance of herb-target interaction prediction on dataset HIT2 [49] 

Model AUROC AUPR 

Max voting  90% 89% 

KNN 84% 86% 

SVM  85% 83% 

Decision Tree 78% 77% 

Neural network 74% 72% 

Logistic Regression 81% 80% 

 
4-Discussion 
Network pharmacology has emerged as a modern avenue for exploring drug mechanisms and innovating new drug designs. 
Computational methodologies stand out as primary tools for forecasting the targets of herbal medicines. However, the intricate 
and diverse chemical structures of herbs pose limitations on the accuracy of predicting herb targets solely based on chemical 
similarity. This constraint arises from the insufficiency of a comprehensive and exhaustive database, compounded by the 
complexity of herb structural features. Moreover, the underlying mechanisms of most herbal formulations remain elusive for 
various reasons. Despite significant advancements in computational techniques and network pharmacology, unraveling the 
complete mechanisms behind the majority of herbal preparations still poses a challenge. This opacity underscores the ongoing 
complexity and depth of research required in the realms of herbal medicine and drug discovery. Many medicinal herbs contain 
numerous ingredients, complicating the distinction between effective and ineffective components. Identifying active 
compounds is challenging, and discovering their pharmacological targets is essential. The proposed research plan significantly 
mitigates these challenges by integrating diverse datasets. This integration process paves the way for understanding the 
molecular mechanisms of herbs through their clinical effects. A computational approach is employed to forecast herb targets, 
incorporating heterogeneous information on herbal medicines, symptoms, targets, and their interactions. The study utilizes a 
heterogeneous network to predict herb targets, utilizing lower-dimensional feature vectors for edges and applying machine 
learning methods for target prediction. This comprehensive approach marks a significant stride in advancing research on herb-
target interactions and unraveling the molecular mechanisms behind the clinical effects of medicinal herbs. In the proposed 
method, seven key steps are involved. These steps include integrating databases, creating a heterogeneous network, extracting 
features, weighting the network, generating a new database, detecting protein complexes, and learning a model for goal 
prediction. Each of these sequential steps plays a crucial role in the overall methodology, contributing to the process of data 
integration, analysis, and prediction within the framework of the study. Following the establishment of a heterogeneous 
network using the dataset, a new dataset is derived based on diverse layers of information and molecular data concerning herbs 
and targets. Subsequently, prominent features utilized in chemical and herbal drug prediction contribute to weighting the 
network. The weighted heterogeneous network is then employed to construct a new dataset focusing on inter-layer 
communication. Traditional techniques (random walk, information diffusion, electrical resistance) enhance information spread 
[60-62]. Proposed method handles noisy, incomplete biological data by combining structural and functional features. This 
amalgamation aims to facilitate training and extraction of informative node representations within the network [63], 
underscoring a comprehensive and innovative approach to processing large-scale biological data. The results demonstrate the 
method's commendable performance compared to state-of-the-art approaches. Noteworthy advancements have been achieved 
when comparing its performance with the PRINCE algorithm in the heterogeneous network. Moving forward, our plan 
involves incorporating additional relevant data into our model, focusing on chemical drugs and diseases. Furthermore, we aim 
to explore symptom-symptom similarity measures [52] to enhance the depth and efficacy of our methodology. By expanding 
the scope of data integration and exploring new similarity measures, we anticipate further refining our approach and its 
outcomes in future research endeavors. 
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